

Problem Set 2

Question 1. Introduction to Differential Equations:

- (1) Draw the graph of $y_1 = e^{3t}$ and $y_2 = 3e^t$ on the same axes. Which function is larger at $t = 0$? Which function is larger at $t = 1$?
- (2) $\frac{d^2}{dt^2}e^t = e^t$. So $y = Ce^t$ is a solution, but a second order differential equation should have two solutions. What is another solution?
- (3) Find the slope of $y = e^{-t}$ at $t = 0$. Find the slope of $\frac{dy}{dt}$ at $t = 1$.
- (4) Show that $\frac{C}{1-Ct}$ solves $y' = y^2$. What is the solution if $y(0) = 1$?
- (5) Describe these differential equations (e.g., first-order, linear, constant coefficient).
 - (a) $y' = 1$.
 - (b) $y'' - y' - \sin(t) = 0$.
 - (c) $(y')^2 - 3ty' - \sin(t) = 0$.
 - (d) $y' - \sin(t) = 0$.
 - (e) $\cos(t)y' + y^2 - \sin(t) = 0$.
 - (f) $y' + t^2 * y = 0$.
 - (g) $y' + 3y + t = 0$.

Question 2. Calculus Review:

- (1) What is the Taylor expansion of $y(x) = \frac{1}{1-x}$ near $x = 0$? Using the expansion show that $y'(x) = 1 + 2x + 3x^2 + \dots = (\frac{1}{1-x})^2$.
- (2) Find:

$$\frac{d}{dx} \int_0^x 4 \sin(e^{3y}) \tanh(y^3) dy.$$

Question 3. Exponential Growth:

- (1) You start with $y(0) = \$2000$ in the bank, which grows according to the equation $y' = 0.03y$ until $t=10$, and then according to the equation $y' = 0.05y$ until $t = 20$. Find a piecewise function:

$$y(t) = \begin{cases} y_1(t) & 0 \leq t \leq 10 \\ y_2(t) & 10 \leq t \leq 20 \end{cases}$$

describing the growth. How much do you have when $t = 20$?

- (2) Repeat the calculation for $Y_0 = \$2000$, and discrete growth where each period n 3% of Y_{n-1} is added to Y_{n-1} to get Y_n (i.e., $Y_n = Y_{n-1} + 0.03Y_{n-1} = 1.03Y_{n-1}$) or as a difference equation $Y_n - Y_{n-1} = 0.03Y_{n-1}$ for $n = 1, \dots, 10$ (1:10 in MATLAB) followed by $Y_n - Y_{n-1} = 0.05Y_{n-1}$ for $n = 11, 12, \dots, 20$ (11:20 in MATLAB). The discrete function (list or sequence) in MATLAB will look like: `[Y0 Y1 Y2]` where `Y0=2000`, `Y1` and `Y2` are 1×10 matrices representing the solutions for `n1=1:10` and `n2=11:20`. How much do you have when $n = 20$?
- (3) Plot both solutions on the same graph. MATLAB code follows to get you started. You must supply the solution in place `????`. If you have an equation for `y1=????` you can use the MATLAB keyword `end` e.g., `y1(end)` to get the last value of `y1`.

```
1 %% Continuous Growth
2 t1=0:.01:10; % time for y_1(t) continous solution for period 1
3 t2=10:.01:20; % time for y_2(t) continous solution for period 2
4 t=[t1 t2]; % totaltime [concatenate]
5 y0=2000; % initial condition
6 y1=????; % you find solution for period 1
7 y2=????; % you find solution for period 2
8 y=[y1 y2]; % total solution [concatenate]
9
10 %% Discrete Growth
11 n1=1:10; % steps for Y1 discrete solution for period 1
12 n2=11:20; % steps for Y2 discrete solution for period 2
13 n=[0 n1 n2]; % totaltime [concatenate]
14 Y0=2000; % initial condition
15 Y1=????; % you find solution for period 1
16 Y2=????; % you find solution for period 2
17 Y=[Y0 Y1 Y2]; % total solution [concatenate]
18
19 %% Plot
20 h=plot(t,y/1000,n,Y/1000,'o'); % plot results
21 set(h,'linewidth',3); % set linewidth for all
22 set(h(2), 'markersize',10); % set markersize for 2nd plot
23
24 set(gca,'fontsize',20); % increase axis fontsize gca='[g]et [c]urrent [a]xis'
25 xlabel('Time or Step');
26 ylabel('Thousands of Dollars');
```