Admin: 1) Up-to-date syllabus on website (link in blackboard) 2) Lab 2 due next week. - Format not critical. - Include all measurements somewhere. - Repeated (>5) measurements in separate file (xls,mat,m,txt,json,xml,...). - Final measurements with errors in standard form in pdf. - Images in pdf or as separate file. - Graphs in pdf. - rule of thumb: anything you discuss in text should be in pdf. 3) Probably only 6 labs. 12 point for free. Review: 1) Error <=> Uncertainty - Unavoidable - Not mistakes 2) Individual error estimates: - Visual Scale - Repeated measurement: range or std 3) Standard form: - Significant figures of best estimate +/- Significant figures of centered error 4) Error propagation: - N measurements: x1 +/- Dx1,...,xN +/- DxN - q(x1,...,xN) +/- sqrt[(dq/dx1 Dx1)^2+...+(dq/dxN DxN)^2] - +- errors add in quadrature - */ fractional errors add in quadrature - q=Bx => Dq=abs(B)Dx 5) Quadrature 6) Error in the mean - plug in =(1/N)*(x1+...+xN); Dx1...DxN=Dx==std(x); D=Dx/sqrt(N); - Conditions: random (symmetric) and uncorrelated Statistics of uncertainties: 1) Mean: =(1/N)*(x1+...+xN); 2) STD: Measured Dx==std(x)=sqrt[(x1-)^2+...+(xN-)^2]/(N-1) 3) Random vs systematic 4) +/- std(x) covers 68% of error 5) Use mean to decrease random error: D=Dx/sqrt(N) 6) Can not eliminate systematic - D_tot = sqrt(D^2+D_sys^2) Rejecting data: 1) Read section, but don't do it Least-Squares-Fitting: 1) Measure x,y points on a function y(x) 2) chi-squared = X^2= [(y(x1;P1...PN)-y1)^2+...+(y(xN;P1...PN)-yN)^2]/std(y) 3) Find minimum X^2 over P1...PN 4) a=polyfit(x,y,N); 5) yfit=polyval(a,x); 6) fminsearch(@(P) chi(P,x,y),[P1,P2]); % non-linear 7) Change to linear - Exponential: y = A exp(B x) => log(y) = log(A) + B x - linear in log(y),x - P1=log(A),P2=B - Power law: y = A x^B => log(y) = log(A) + B log(x) - linear in log(y), log(x) - P1=log(A), P2=B - Logrythmic: y = A log(x^B) => y = exp(A) + B log(x) - linear in y, log(x) - P1=exp(A), P2=B