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For the other compounds measured the spin-orbit 
coupling constants thus obtained are either unreason­
ably large or small. 

(CH3NH3hIrCI6, (C6H6NhIrCI6 and (<p4AshIrCI6 
display a rather peculiar magnetic behavior with 
moments considerably below the expected values over 
the whole temperature range investigated. No ex-
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planation of this behavior will be attempted in the 
present paper. 
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~ metho~ is outli~ed by which it is possible to calculate exactly the behavior of several hundred inter­
act~ng claSSical par~lcles. The ~tudy of this many-body problem is carried out by an electronic computer 
which solves numencally the simultaneous equations of motion. The limitations of this numerical scheme 
are enum.erat:? and t~e important steps in ~aking the program efficient on the computers are indicated. 
The. al?phcablhty ?f t~s ~ethod to the solutIOn of many problems in both equilibrium and nonequilibrium 
statistical mechamcs IS discussed. 

INTRODUCTION 

ONE of the great difficulties in the present day 
theoretical attempts to describe physical and 

chemical systems is the inadequate mathematical 
apparatus which has been available to solve the many­
body problem. Thus, although the properties of an 
isolated molecule are well established and the ele­
mentary processes which occur when two such mole­
cules interact are described by well-known laws the 
behavior of systems of many interacting mole~ules 
cannot, in general, be dealt with theoretically in an 
exact way. Even a three-particle system presents great 
analytical difficulty. Since these difficulties are not 
conceptual but mathematical, high-speed computers 
are well suited to deal with them. 

To take explicitly into account the interaction of a 
fairly large number of particles involves either multi­
d.imensional integrals or high-order differential equa­
tIOns. These mathematical expressions can be reduced 
to manageable equations for dilute systems since, in 
that case, the behavior of the system can be conceived 
?f as ~ succession of essentially unrelated binary 
mteractions. In the case of nondilute systems that is 
when the range of intermolecular forces is ~ot small 
compared to the average intermolecular distance 
analytical theories have been developed to approxi~ 
mate the many-body problem in various ingenious ways. 

* Work was performed under auspices of the U. S. Atomic 
Energy Commission. 

The most common scheme is to let a representative 
particle experience the potential of the rest of the parti­
cles held fixed in an average position. This average 
potential can be obtained from a definite physical 
model or in a self-consistent way. The next better 
approximation in such a scheme would be to let two 
molecules move in the potential of the rest of the 
system. This procedure and several variations of it 
have indeed been worked out for various physical 
models. However, the calculations are so complicated 
that it is necessary to seek numerical solutions by 
means of automatic computers. It is interesting to note 
that to calculate the actual dynamics of the many­
particle system is, in some cases, not a greater problem 
than the calculations required for the models. 

One of the aims of the exact numerical solution is to 
compare the results with these analytical theories. 
S~ch comp~risons are more clean-cut than comparisons 
WIth expenments on natural systems because it is 
possible to set up artificial many-particle systems with 
interactions which are both simple and exactly known 
and for which analytical theories are relatively easy 
to work out. Furthermore, much more detailed in­
forma.tio.n is availa~le from calculations of this type 
than It IS ever possIble to get from real experiments. 
?ince the. detailed history of the motion of each particle 
IS accessIble, such a calculation makes it possible to 
check analytical theories at various critical inter­
mediate points. Beyond determining which analytical 
schemes best approximate many-particle behavior, 
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these numerical calculations could conceivably be used 
to deduce new generalizations which are not now 
recognizable because of the mathematical complexities 
involved. 

Another aim of the calculations is to study phe­
nomena which present theories have difficulty de­
scribing because, for example, too many molecules 
have to be considered simultaneously. Some phase 
transactions fall into this class because of the rather 
large number of molecules which have to cooperate 
to form the nucleus of a new phase. The quantitative 
description of pure liquids also requires the considera­
tions of several distinct representative molecules. 
Another type of problem for which the dynamical 
calculation might prove useful is one in which the 
number of molecules in the system is rather large but 
not so large that statistical methods can be used with 
confidence. The nucleation problem is a case in point. 
The stability and surface tension of the nuclei could, 
for example, be studied. 

Many of the aforementioned advantages of the 
dynamical calculation also pertain to the Monte Carlo 
calculations which have been and are being carried out 
by various workers. 1- 3 In the Monte Carlo calculation, 
however, the moves of the particles are artificial rather 
than dynamical so that only the average positions of 
the particles are meaningful. For this reason, only the 
equilibrium properties can be calculated. The dy­
namical calculation was, on the other hand, originally 
designed to study relaxation phenomena and can, in 
principle, be used to study transport properties gen­
erally. This is particularly desirable since the present 
analytical theories of transport phenomena are con­
siderably less advanced than those dealing with 
equilibrium phenomena. The early applications of the 
method are, however, principally concerned with 
equilibrium situations in order to study the feasibility 
of the method.4-6 The Monte Carlo method and also 
the molecular dynamics scheme are exact but subject 
to the limitations discussed below when comparison 
to real systems is made. 

LIMITATIONS 

The essential limitations of the method are due to the 
relatively small number of particles that can be handled. 
The size of the system of molecules is limited by the 

1 Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, J. 
Chern. Phys. 21, 1087 (1953); M. N. Rosenbluth and A. W. 
Rosenbluth, ibid. 22, 881 (1954). 

2 Alder, Frankel, and Lewinson, J. Chern. Phys. 23, 417 (1955). 
3 W. W. Wood and F. R. Parker, J. Chern. Phys. 27,720 (1957); 

W. W. Wood and J. D. Jacobson, ibid. 27,1207 (1957). 
4 B. J. Alder and T. E. Wainwright, J. Chern. Phys. 27, 1208 

(1957). 
5 T. E. Wainwrj~ht and B. J. Alder, Nuovo cirnento 9, 

Supp!. Sec. 10, 116 (1958). 
6 B. J. Alder and T. E. Wainwright, Proceedings of the 

I.U.P.A.P. Symposium on Statistical Mechanical Theory of 
Transport Processes, Brussels, 1956 (Interscience Publishers, 
Inc., New York, to be published). 

memory capacity and speed of the computing machines. 
With the best presently available computers, it has 
been possible to treat up to five hundred molecules. 
With five hundred molecules it requires about a half­
hour to achieve an average of one collision per mole­
cule, so that computing speed presently is the limiting 
factor rather than memory space. Computers now being 
planned should be able to handle ten thousand mole­
cules in calculations which do not require very many 
collisions. Even that number of molecules is still small 
enough so that the nature of the boundaries has to be 
critically considered. If it is desired to represent a 
macroscopic system as nearly as possible with the small 
number of molecules which can be used, it is probably 
best to employ periodic boundaries, that is, to let the 
molecules be in a box with penetrable walls, but con­
strained in such a way that the number of molecules 
in the box remains constant. This is accomplished by 
causing a molecule which leaves the box through one 
wall to re-enter with unchanged velocity through the 
opposite wall. The alternative is to let the walls be 
reflecting. In that case, a relatively large number of the 
molecules (half of them in the case of a SOO-molecule 
system) are, at any time, next to an artificial barrier, 
whereas, in the periodic boundary case molecules 
interact only with other molecules. The periodic 
boundary condition in molecular dynamics and the 
Monte Carlo method can be considered as giving rise 
to an infinite system made up of identical cells of a few 
hundred particles each, rather than the one or two 
particles that can be handled analytically. The differ­
ence in the virial coefficients between an infinite system 
and a system consisting of a finite number of molecules, 
N, with periodic boundary conditions can be shown 
theoretically to be of order liN. Thus, for a system 
of a few hundred molecules the pressure can be calcu­
lated to better than one percent. For a few hundred 
particles in a box with hard walls, the difference would 
be much larger when compared to an infinite system. At 
high densities no such theory is available. However, in 
the solid phase the boundaries naturally force a par­
ticular crystalline periodic arrangement on the mole­
cules. In the liquid and solid regions empirical tests have 
to be made by comparing large and small samples to 
estimate the seriousness of the effect of the boundary. 
Such studies have shown that the size of the sample in 
the dense region is of no more serious consequence than 
in the gas region except in phase transition regions. 

In phase transition regions the artificial inhibition of 
density fluctuations caused by maintaining a constant 
number of molecules in the box can be serious. In a 
macroscopic system a transition region is characterized 
by two phases of different densities which exist together 
in equilibrium. The volume over which one of these 
phases extends may contain more than a few hundred 
molecules. Thus, for example, in a heterogeneous 
equilibrium between various sized crystallites and the 
mc:lt, the equilibrium size distribution is seriously 
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distorted since the maximum size a crystallite can have 
would be, say, 500 particles. Equally serious is the 
necessity that this SOO-particle crystal solidifies not 
only in a given lattice type but also in a special orienta­
tion with respect to the boundary, affecting its proba­
bility of appearance. Thus the only way solids formed 
from a melt can differ is by a translational displacement. 
Evidence will be presented that in order to examine the 
properties of a heterogeneous system it is necessary to 
use many more particles than in the case of a single 
phase system. In the homogeneous solid region itself 
various lattice types can be studied to overcome 
the above mentioned difficulty and the one of lowest 
free energy determined. Examples of this have been 
worked out. 

Although small systems can represent an infinite 
system remarkably well, the statistical fluctuations of 
any property (the pressure, for example) must be 
examined. From the point of view of making most 
efficient use of computing time, these statistical 
fluctuations are best reduced by averaging a large 
number of calculations with a small system rather than 
making a smaller number of calculations in a large 
system. 

Both the Monte Carlo method and the dynamical 
method can have difficulty due to the slow convergence 
of the system to the equilibrium configuration. In the 
dynamical method, with presently available machines, 
it is practical to follow a small system of molecules for 
only about one millimicrosecond at low temperature 
(the order of a few hundred thousand collisions for a 
32-particle system). It is sometimes a worry whether 
a system is in equilibrium or whether it is in a meta­
stable state. This question can usually be resolved by 
starting the system in various initial configurations and 
observing whether the same final state is reached. 

Still another limitation on the method which is con­
nected with the smallness of the system, is that mole­
cules with long-range potentials cannot be adequately 
studied since the field of one molecule would extend 
outside the periodic box. This limitation could be 
probably overcome by introducing approximations 
similar to those used in analytical theories. That is, the 
particles could interact properly at short range but the 
long-range interactions could be replaced by an average 
potential. A direct numerical solution of the quantum­
mechanical many-body problem has not been at­
tempted. The present calculation is restricted, in its 
application to real systems, to those for which perturba­
tion theory from the classical equations is adequate. 

DESCRIPTION OF THE METHOD 

In order to follow the dynamics of a many-particle 
system with any sort of interaction potential, one could 
at any instant calculate the force on each particle by 
considering the influence of each of its neighbors. The 
trajectories could then be traced by allowing the 
particles to move under a constant force for a short-

time interval and then by recalculating a new force 
to apply for the next short-time interval, and so on. 
This method could also handle particles with aniso­
tropic potentials and with rotational and other degrees 
of freedom, provided that classical description is ade­
quate. The accuracy of such calculations would depend 
on the length of the time interval. Since it was desired 
in the present work to make no approximations in the 
calculations, a simple potential was chosen for which 
the force is truly constant (zero) for short-time inter­
vals during which the particles are allowed to move. 
Although it is feasible to deal with realistic potentials, it 
entails a considerable slowing down of the calculation 
and involves the problem of having to cope with re­
pulsive collisions where the forces the particles ex­
perience change very rapidly. 

The most general interaction potential which has so 
far been used is the square-well potential, V, 

V= 00 

V=Vo 
V=O 

r<<TI 

O"I<r<<T2 

r><T2, 

where r is the magnitude of the separation of the 
centers of a pair of molecules and <TI, <T2, and Vo are 
constants. The hard sphere potential is a special case. 
This interaction potential allows the sequence of events 
in a many-body system to be described by a series of 
two-body collisions. That is, since a particle does not 
experience any change in velocity except at the instant 
when it is separated from another particle by <TI or <T2, 

there will never, in a finite system, be more than two 
particles at a time whose velocities are changing. This 
potential has the qualitative features of a real molecular 
potential and still some elements of simplicity which 
make the analytical theories relatively easy to apply. 
Furthermore, it is possible to make theoretical exten­
sions of the results to more realistic potentials by 
perturbation techniques. It is important to develop 
such perturbation techniques in order to overcome one 
of the most severe limitations of numerical schemes, 
namely, that they are only valid for the specific case 
solved. 

In the dynamical calculation the molecules are all 
given initial velocities and positions. From then on, 
of course, the future behavior of the system is deter­
mined. Various initial conditions have been used but 
most frequently the molecules have been given equal 
initial kinetic energies with a random selection of the 
three direction cosines of the velocity and initial 
positions corresponding to a face-centered cubic lattice. 
For such a lattice the number of molecules will be 
multiples of 4 which is the number of lattice sites in a 
basic cube. The box at whose sides the periodic bound­
ary conditions are' applied has usually been taken to be 
a cube with edges of unit length so that the number of 
molecules typically used have been 32, 108, 256, and 
500; that is, 4n3• The specific volume of the system, v, 
compared to the close-packed specific volume, Vo, is 
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FIG. J. Schematic diagram of the logical sequence of the calculations. 

v/vo=V2/No}, where N is the number of molecules 
in the system. ITl is adjusted to produce the desired 
specific volume for the system. For other lattice types 
the basic cell may be more complicated, but as long as 
it is possible to construct a rectangular parallelepiped 
with a whole number of cells, the same type of periodic 
boundary conditions can be used. 

Once the initial configuration is set up the machine 

is made to calculate exactly, to the number of sig­
nificant figures carried (9), the time at which the 
first collision occurs in the system. The word "collision" 
is used to mean either an attractive or repulsive en­
counter between two molecules. The collision time is 
obtained by evaluating, for each pair in the system, 
the time required for the projected paths to reach a 
separation of ITl or 1T2. If two molecules, i and j, have 
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initial positions riO and rjO and velocities Ui and Uj, 

then at a later time, t, the square of the separation of 
the molecules will be 

(ri-rj)2= (riO- r jo)2+2t(riO- r jO) 
. (Ui- U j)+t2(Ui- U Y· 

Thus the time required for a repulsive or attractive 
collision is 

where 
rij=riU-rjO 

Uij=Ui-Uj 

bij=rirUij 

Ci/a)=r'il- u a2• 

t ,P) is the time required for a repulsive collision and 
t ,)2) is the time required for an attractive collision. It is 
clear that C i/I) must be positive, otherwise the two 
hard cores overlap. If Ci/f) is negative, an error has 
been made and the machine is made to stop. (Another 
insurance against machine errors in the calculation is a 
check of the total energy which must remain constant.) 
C i/2) , however, can be either positive or negative de­
pending on whether or not the separation of molecules 
i andj is within the range of the attractive potential. 

In order to find the time of the first collision in the 
system it is necessary to calculate a collision time for 
each pair of particles. In calculating a collision time for 
molecules i andj, the computing machine goes through 
the following sequence of tests and classification (see 
also Fig. 1). 

I b/i<O (Centers are approaching.) 
(a) C;P)<O (rij is within the attractive range.) 

(1) bi/-Ui/CiP»O (Cores collide.) 

- bij+ (b,l-UilC ;p» t 
tiP)=-_· ? '--'-'. 

tliF 

(2) bil-Uij2CiP)<O (Cores do not collide. 
Attractive collision takes place.) 

( b ) C;pJ > 0 (r ij is ou tside the attrac tive range.) 
(1) bil-u.i/C;P»O (Attractive collision 

takes place; capture.) 

- b '.'- (b .. 2-U .. 2C ,'(2» I t . ,(2) = ') 1) 1J 'J ...... 

'~J uil . 

(2) bi/-Ui/C,/2)<O (No collision takes 
place.) 

II bij>O (Centers recede.) 
(a) C;P)<O (rij is within attractive range. At­

tractive collision takes place.) 

-b·+ (b .. 2-U .. 2C .. (2»! 
li/2)= 'J 1J 'J 'J • 

uil 
(b) C;P»O (ri] is outside the attractive range. No 

collision takes place.) 

rr -:as ~ / '-Ie l' 

~ .. --4~'4~Y ~ 
,~ ,.4> ~1 ~ 

..... 

&. . ~.,. ~ t ~ ~ (~14 ..... ~.~ 
FIG. 2. The traces of 32 hard sphere particles in the periodic 

boundary conditions in the solid phase for about 3000 collisions. 

In calculating these collision times, the periodic bound­
ary conditions are allowed for as follows. Each pair of 
molecules, i and j, represents an infinite set of pairs 
whose separations can be generated by adding integers 
to the x, y, and z components of r ij. (The dimensions 
of the periodic box are taken to be unity.) In calcu­
lating Ii/a) only the closest of all the possible pairs is 
considered. This means that some possible collisions 
are ignored but all of them are among pairs of mole­
cules, each component of whose separations is greater 
than t. A maximum time, tm, is assigned which is 
too short to allow any two molecules to change their 
separation by as much as (t-U2) and any Ii/a) 
which is greater than tm is rejected. If, as may happen 
in a dilute system, no ii/a) is found which is less than 
tm , all the molecules are allowed to move at constant 
velocity for a time equal to tm and another try is made 
to find an acceptable t;/OI). When all the ti/a) which are 
less than tm have been found, the machine has finished 
what is called a "long cycle." All the molecules are now 
allowed to move at constant velocity for a time which is 
equal to the shortest ti / a ) found. Now one pair of 
molecules has a separation of Ul or U2 so that their 
velocities must be changed. In all the calculations so 
far made the molecules are assumed to have equal 
masses so that the members of a colliding pair will 
experience equal and opposite velocity changes. The 
velocity change, .:lv, depends upon the type of collision 
as followst; 
( 1) core collision 

t These formulas result from conservation of momentum and 
and energy of the classical two-body problem for square-well 
molecules. 
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F1G. 3. The traces of the same system as in Fig. 2 after it has 
transformed to the fluid phase also for 3000 collisions. 

(2) attractive collision 
(a) C/2»ot 

"Capture" 

AV ,= - AV= =-~ij[(40'22VO+b2)}+b .. J 
' J 20'22 m 'J 'J 

(b) Ci/Z)<ot 
40'22VO 

(i) bil>----
m 

"Dissociation" 

"Bounce" 

At this point the machine could start another long 
cycle and proceed indefinitely. A great saving in com­
puting time is made, however, by utilizing the rest 
of the ti/a) calculated in the long cycle just completed. 
The difference between the shortest t i / a

) which has 
just elapsed and the next larger tda) is the additional 
time required for the next collision unless one of the 
molecules which was involved in the first collision is 
immediately involved in a second collision. It is neces­
sary then only to re-examine all possible collisions 
which can be made by the two molecules whose ve­
locities have just been changed. This is called a short 

cycle. All the ii/a) in the previously compiled list are 
diminished by the shortest ti/a) which has already 
elapsed. Those t i/a ) in the list which pertain to mole­
cules whose velocities have been changed are eliminated 
since they have been based on the erroneous presump­
tion that the two were not going to collide. (With each 
time that is stored in the memory, the identity of the 
two particles to which it pertains are also saved.) 
The new [i/a ) which were calculated in the short 
cycle are added to the list if they are less than the 
largest [;/a) present on the list. The number of pairs 
which must be examined in a short cycle is only 2.Y - 3, 
whereas, in a long cycle .\- (.\' -1) /2 pairs must be 
examined so that in a large system the saving in com­
puting time is very great. 

The machine continues executing short cycles until 
all of the t ;la) have been used up and then goes through 
another long cycle to repeat the process. Except in very 
dilute systems, the time spent in long cycles is relatively 
small so that the average calculating time per collision 
is roughly proportional to If. For example, for 500 
particles in the liquid region, the machine spends about 
five minutes in a long cycle and does not need to pre­
pare another list of times for the next three hours of 
calcula ting. 

The calculation was first set up for the Univac 
computer. The small capacity of the high-speed 
memory of this machine limited the system which 
could be efficiently handled to about 100 rigid spheres. 
With this number of molecules, roughly 100 collisions 
(that is, two mean collision times) could be calculated 
in one hour. The IBM 704 calculator handles about 
2000 collisions per hour for 100 molecules and about 
500 collisions per hour for 500 molecules. As can be 
seen, the number of collisions that can be calculated 
per hour depends in these denser systems about 

t C.;<2) is calculated before the particles are moved into the FIG, 4, The traces of 32 particles with free boundaries for about 
contact position. 5000 collisions. 
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linearly on the number of molecules. However, the 
average number of collisions per molecule per hour 
is proportional to the square of the number of mole­
cules. The 704 machine can calculate 40 collisions per 
molecule per hour for a 100-molecule system and only 2 
collisions per molecule per hour for a sOO-molecule 
system. Hence it is more economical to work with 
small rather than large samples as long as boundary 
effects are not serious. The effects of inherent fluctua­
tions can be removed by calculating a large number of 
collisions per molecule. 

It is clearly desirable to speed the calculation up 
even further for equilibrium calculations. The Monte 
Carlo method is calculationally simpler so that many 
more moves can be made per unit calculating time. But 
practical experience so far has shown that both methods 
are about equally efficient in arriving at equilibrium 
configurations. For small systems, major improvements 
can only come through increased calculator speed. 
The smallest system that can be studied with a hope 
that the boundary effects might not be serious contains 
32 particles. Below that number in a cube, even the 
nearest neighbors of a given particle are not all inde­
pendent particles. Since a practical limit for the calcu­
lating time on a single problem is about 40 hours, a 
32-particle system at liquid densities can now be 
followed for only about 10-9 second and, with presently 
planned machines, for about 10-7 second if the present 
code is used. For larger systems this time will be even 
less. Machines with very large memories, however, 
will make it possible to arrange the calculations in such 
a way that the computing time per collision per mole­
cule will approximately be proportional to N rather 
than N2. The principle of this scheme is to consider 
only collisions between close particles. The cube of unit 
dimensions is divided up into a grid of smaller cubes. 
Collisions are considered only between particles in 
neighboring cubes of the grid. This calculation eli­
minates the calculation of collision times for particles 
which are far apart and hence are very likely to be 
deflected before they collide. This would be done at the 
expense of keeping track of particles which are in 
neighboring cubes of the grid. New times have to be 
calculated as before when particles collide and, further­
more, as particles cross the grid, new times have to be 
also calculated for them since their set of neighboring 
cubes has partially changed. At high densities and 
with a good choice of the grid, however, few particles 
will cross grid lines. 

APPLICATIONS 

As the calculation of the motions of the many 
particle system proceeds, the history of each particle 
is recorded on magnetic tape. A separate process later 
analyzes this very detailed data for various desired 
quantities. The reason for such a two-step procedure 
is that the size of the computing machine's memory 
does not allow the analysis to take place at the same 

FIG. 5. The traces of 108 particles with periodic boundary con­
ditions for about 3000 collisions in the liquid-vapor region. 

time the motions are being calculated. However, a few 
easily calculated quantities such as the pressure, colli­
sion rate, and potential energy are obtained during the 
first phase of the calculation. This makes it possible to 
judge when the system has reached equilibrium. To 
conserve tape the positions and velocities of all the 
particles are put on tape only infrequently, but for each 
collision the positions and velocities of the two colliding 
particles are written on the tape. 

The calculation can also be monitored by means of 
a cathode-ray tube which is attached to the computer 
and which forms a picture of the system after each 
time step. On the face of this tube are plotted in plane­
projection the positions of the centers of the particles. 
A camera focused on the face of the tube for a large 
number of time steps will record the trajectory of 
each particle as a succession of dots. A slightly different 
monitoring routine projects an identifying symbol at 
the position of each molecule so that the beginnings and 
ends of molecule migrations can be located. Since these 
photographs have proved very useful in visualizing 
what is happening in the system, some examples are 
given in Figs. 2 to 5. Figures 2 and 3 show the difference 
in molecular motions between a fluid and a solid made 
up of 32 rigid spheres. Each picture follows the system 
for 3000 collisions. The solid in Fig. 2 also demonstrates 
well the periodic boundaries. The molecules near the 
side of the box sometimes wander over the boundary 
and reappear at the opposite side. Only 16 traces can 
be distinguished in this picture because in the plane­
projection, half the molecules are almost directly 
behind other molecules in the lattice. A free boundary 
is illustrated in Fig. 4, which shows an isolated crystal­
lite made up of 32 molecules with attractive potentials. 
The enhanced motions of particles near the surface is 
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easily recognized. Figure 5 demonstrates a liquid-vapor 
phase separation for 108 molecules with attractive 
potentials. 

These pictures are, however, only of qualitative 
significance; quantitative information can be obtained 
by direct calculation of both the equilibrium and 
nonequilibrium properties. In order to average out the 
statistical fluctuations in the approach to equilibrium, 
the analysis is averaged over problems which have 
been restarted several times with slightly different 
initial conditions. Averages for equilibrium properties 
can be obtained by running the problem a long time. 
The amount of averaging depends on the fluctuations 
which are encountered. Rigid sphere problems in 
general do not have to run as long as problems in­
volving attractive potentials because, in the former, 
there are no potential energy fluctuations and also 
equilibrium is reached more quickly. 

Among the properties of systems which have been 
analyzed before equilibrium is reached, is the behavior 
of the Boltzmann H function. In order to do this the 
distribution in kinetic energy of the particles as a func­
tion of time is required, and this is of interest in itself. 
For example, in a problem in which all the particles 
have the same initial kinetic energy, it is desirable to 
ascertain how much time is necessary to produce parti­
cles of many times the initial kinetic energy. The 
analysis also allows one to determine how the kinetic 
energy is distributed in space. This would be of interest, 
for example, in the study of the equilibration of a 
system which initially has a nonuniform temperature 
distribution. Also the distribution in the components 
of the velocity can be calculated. This could be of 

interest when, for example, a temperature or velocity 
gradient is impressed on the sample. In a calculation 
where all the molecules are initially bunched up in a 
small region of the box, the spacial distribution of the 
particles themselves is of interest in determining how 
quickly a subsequent "explosion" fills the container. 

At equilibrium, besides the pressure and energy 
which are calculated as the problem is generated, the 
mean free path, the self-diffusion coefficient, and the 
pair and triplet spacial distribution functions of the 
particles can be calculated. Further analysis can be 
made of the distribution of cluster sizes, the distribu­
tion of diffusion distances about the mean, and of the 
distribution of the energies of colliding particles in the 
center-of-mass frame. 

The above list is only a partial one to illustrate the 
range of problems which can be studied. Most of these 
calculations have been tried out in a few cases which 
will be subjects of future publications. Some of the 
analysis, namely, the pair and particularly the triplet 
distribution functions, are heavy time consumers. 
However, they do not need to be evaluated in every 
instance. 

A rather large amount of calculation has been de­
voted to thermodynamic properties. The system of 
rigid spheres has been made a test case and various 
boundary conditions, lattice types, and system sizes 
have been investigated. Two-dimensional hard-disk 
particles, as well as mi~tures of different sizes of spheres, 
have been investigated too. These calculations, which 
show the general feasibility of this approach to the 
many-body problem, will be published soon. 


