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Exam 1 Review

Newtonian Lagrangian

Input:
F⃗n(x⃗n, ˙⃗xn, t)
Conservative
Force:

F⃗n = −∂V (x⃗n)
∂x⃗n

.

Input:
L(qk, q̇k, t) =
T ( ˙⃗xn) − V (x⃗n),
Generalized
Coordinates:
x⃗n = x⃗n(qk, q̇k, t),
qk = qk(x⃗n, ˙⃗xn, t)
Kinetic Energy:

T ( ˙⃗xn) = 1
2mn

˙⃗x2
n.

Potential Energy:
V (x⃗n)

Input:
H(pk, qk, t) =

K∑
k=1

pkq̇k − L(qk, q̇k, t),

pk = ∂L

∂q̇k

.

Ḣ = 0 ⇐⇒ ∂L

∂t
= 0

Hamiltonian

Equation of Motion

Initial Conditions:
x⃗n(0) = X⃗0

n

˙⃗xn(0) = ˙⃗
X0

n

qk(0) = Q0
k

q̇k(0) = Q̇0
k

Output:
qk(t) or x⃗n(t)
Convert:
x⃗n = x⃗n(qk, q̇k, t)
qk = qk(x⃗n, ˙⃗xn, t)

mn
¨⃗xn = F⃗n(x⃗n, ˙⃗xn, t)

pn = ∂L

∂q̇n

ṗn = ∂L

∂qn

Figure 1. Overview of mechanics (so far).

We have studied two approaches to mechanics—Newtonian and Lagrangian. They both give the same
final output, the time evolution of the coordinates, either generalized qk(t) or Cartesian x⃗n(t).
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1. Newtonian Mechanics Review.

The most general version of Newtonian mechanics relates the kinematic description of N particles x⃗n(t)
to the dynamic forces applied to the particles F⃗n in Newton’s second law:

mn
¨⃗xn = F⃗n(x⃗n, ˙⃗xn, t).

It is often useful to break up the force into internal forces on particle n from particle k, F⃗ int
nk , and external

forces, F⃗ ext
n , which act on an individual particle n. In that case,

mn
¨⃗xn =

N∑
k=1

F⃗ int
nk + F⃗ ext

n .

Question 1. Newton’s Third Law
(1) Describe the weak and strong version of Newton’s third Law.

Show Answer:
(Weak form:) Forces between particles are equal in magnitude and opposite in direction:

F⃗ int
nk = −F⃗ int

kn

(Strong form:) Forces between particles are equal in magnitude and opposite in direction and the
direction is pointing from one particle center to the other:

F int
nk r̂nk = −F int

kn r̂nk,

where

r̂nk = r⃗nk

|r⃗nk|
,

and

r⃗nk = x⃗k − x⃗n.

(2) Define the center of mass and derive the equation of motion for it using the weak form of Newton’s
third Law in terms of the total external force:

F⃗ ext
total =

N∑
n=1

F⃗ ext
n .

Show Answer:
Center of Mass,

X⃗cm =
∑N

n=1 mnx⃗n

M

where

M =
N∑

n=1
mn.
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is the total mass.

X⃗cm =
∑N

n=1 mnx⃗n

M

MX⃗cm =
N∑

n=1
mnx⃗n

M
¨⃗

Xcm =
N∑

n=1
mn

¨⃗xn

mn
¨⃗xn =

N∑
k=1

F⃗ int
nk + F⃗ ext

n . (Newton’s second law)

M
¨⃗

Xcm =
N∑

n=1

N∑
k=1

F⃗ int
nk +

N∑
n=1

F⃗ ext
n

=
N−1∑
n=1

N∑
k=n+1

F⃗ int
nk + F⃗ int

kn +
N∑

n=1
F⃗ ext

n

F⃗ int
nk = −F⃗ int

kn (Newton’s third law)

M
¨⃗

Xcm =
N−1∑
n=1

N∑
k=n+1

F⃗ int
nk − F⃗ int

nk +
N∑

n=1
F⃗ ext

n

M
¨⃗

Xcm =
N∑

n=1
F⃗ ext

n ≡ F⃗ ext
total

(3) Define the total angular momentum about the stationary point x⃗0 and derive the equation of motion
for it using the strong form of Newton’s third Law in terms of the total external torque:

N⃗ ext
total =

N∑
n=1

r⃗n × F⃗ ext
n .

Show Answer:
Total angular momentum,

L⃗ = −
N∑

n=1
mn

˙⃗xn × (x⃗n − x⃗0)

L⃗ = −
N∑

n=1
mn

˙⃗rn × r⃗n

where

r⃗n = x⃗n − x⃗0.
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L⃗ = −
N∑

n=1
mn

˙⃗rn × r⃗n

˙⃗
L = −

N∑
n=1

mn
¨⃗rn × r⃗n + ˙⃗rn × ˙⃗rn

= −
N∑

n=1
mn

¨⃗rn × r⃗n (⃗a × a⃗ = 0)

mn
¨⃗xn =

N∑
k=1

F⃗ int
nk + F⃗ ext

n . (Newton’s second law)

˙⃗
L = −

N∑
n=1

(
N∑

k=1
F⃗ int

nk + F⃗ ext
n ) × r⃗n

= −
N∑

n=1

N∑
k=1

F⃗ int
nk × r⃗n −

N∑
n=1

F⃗ ext
n × r⃗n

= −
N−1∑
n=1

N∑
k=n+1

(F⃗ int
nk × r⃗n + F⃗ int

kn × r⃗k) −
N∑

n=1
F⃗ ext

n × r⃗n

F int
nk r̂nk = −F int

kn r̂nk (Newton’s third law)

˙⃗
L = −

N−1∑
n=1

N∑
k=n+1

F int
nk (r̂nk × r⃗n − r̂nk × r⃗k) −

N∑
n=1

F⃗ ext
n × r⃗n

= −
N−1∑
n=1

N∑
k=n+1

F int
nk r̂nk × (r⃗n − r⃗k) −

N∑
n=1

F⃗ ext
n × r⃗n

r⃗nk = x⃗k − x⃗n = x⃗k − x⃗0 − (x⃗n − x⃗0) = r⃗k − r⃗n

˙⃗
L =

N−1∑
n=1

N∑
k=n+1

F int
nk r̂nk × r⃗nk −

N∑
n=1

F⃗ ext
n × r⃗n

â × a⃗ = 0 ∀a⃗

˙⃗
L = −

N∑
n=1

F⃗ ext
n × r⃗n =

N∑
n=1

r⃗n × F⃗ ext
n ≡ N⃗ ext

total
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Question 2. One particle, force depends only on time. A particle of mass m = 3 kg initially t = 0 s
at position x⃗(0) = (−3, 2, −3) m and initial velocity ˙⃗x(0) = (1, −2, 3) m/s is acted on by a force F⃗ (t) =
(3t, −2, 3 sin t) N .

(1) Find a general expression for the position of the particle x⃗(t) as a function of time t.
Show Answer:

m¨⃗x(t) = F⃗ (t) = (3t, −2, 3 sin t)
m ˙⃗x(t) = (3/2t2, −2t, −3 cos t) + mV⃗0

˙⃗x(0) = (0, 0, −3)/m + V⃗0 = (1, −2, 3)
V⃗0 = (1, −2, 3) − (0, 0, −1) = (1, −2, 4)

mx⃗(t) = (1/2t3, −t2, −3 sin t) + mV⃗0t + mX⃗0

x⃗(0) = (0, 0, 0) + X⃗0 = (−3, 2, −3)
X⃗0 = (−3, 2, −3)

x⃗(t) = (1/2t3, −t2, −3 sin t)/m + V⃗0t + X⃗0

x⃗(t) = (1/6t3 + t − 3, −1/3t2 − 2t + 2, 4t − 3 − sin t) m

Check Answer:

x⃗(0) = (−3, 2, −3) m ✓

˙⃗x(t) = (1/2t2 + 1, −2/3t − 2, 4 − cos t) m/s

˙⃗x(0) = (1, −2, 3) m/s ✓

¨⃗x(t) = (t, −2/3, sin t) m/s2

m¨⃗x(t) = F⃗ (t) = (3t3, −2, 3 sin t) N ✓

(2) What time t is the ẑ = (0, 0, 1) velocity vz = ˙⃗x · ẑ maximum in the range of 0 s ≤ t ≤ 6 s? What is
the acceleration vector at that point?
Show Answer:

vz = ˙⃗x(t) · ẑ = (1/2t2 + 1, −2/3t − 2, 4 − cos t) · (0, 0, 1) m/s = 4 − cos t

v̇z = sin t = 0
t = nπ, n ∈ Z
t = {0, π}, (0 s ≤ t ≤ 6)

v̈z = cos t

cos 0 > 0, cos π < 0✓
t = π s ≈ 3.14 s

¨⃗x(t) = (t, −2/3, sin t) m/s2

¨⃗x(π) = (π, −2/3, 0) m/s2 ≈ (3.14, −2/3, 0) m/s2
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(3) Show that the Impulse-Momentum Theorem is true for the ẑ component of the motion during the
interval 0 ≤ t ≤ π?
Show Answer:

Jz = J⃗ · ẑ =
∫ π

0
F⃗ (t) · ẑ dt = ∆p⃗ · ẑ

=
∫ π

0
3 sin t dt = m(vz(π) − vz(0))

= −3 cos t|π0 = 3(4 − cos π − 4 + cos 0)
= −3(−1 − 1) = 3(4 + 1 − 4 + 1)

Jz = 6 = 6

Question 3. One particle, force depends only space. All known real forces are conservative. A conservative
force can be derived from a potential energy V . Consider a mass m at the end of mass-less spring with
spring constant K and rest length L0 hanging from a rigid immovable beam under gravity. Assume the
motion is one dimensional in the direction of gravity.

(1) Measuring the position y of the mass from beam with y increasing downward and the zero of
gravitational potential at y = 0, what is the potential energy of the mass-spring system?
Show Answer: The potential from the spring is:

Vspring(y) = 1
2K(y − L0)2.

The potential from gravity is:
Vgravity(y) = −mgy

Then the total potential

V (y) = Vspring(y) + Vgravity(y) = 1
2K(y − L0)2 − mgy

(2) Find the equation of motion for the mass.
Show Answer:

mÿ = −∂V

∂y

mÿ = −K(y − L0) + mg

ÿ = −K

m
(y − L0) + g
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(3) Non-dimensionalize the equation using [L] = L0, [T ] =
√

m
K

, and [M ] = m.
Show Answer:

t =
√

m

K
τ

τ =
√

K

m
t

dτ

dt
=

√
K

m

y(t) = L0u(τ)

ẏ(t) = dy(t)
dt

= d(L0u(τ))
dt

= L0
du(τ)

dτ

dτ

dt

= L0
du(τ)

dτ

√
K

m

= L0u̇(τ)
√

K

m

ẏ(t) = L0

√
K

m
u̇(τ)

ÿ(t) = L0
K

m
ü(τ)

ÿ(t) = −K

m
(y(t) − L0) + g

L0
K

m
ü(τ) = −K

m
(L0u(τ) − L0) + g

= −L0
K

m
(u(τ) − 1) + g

ü(τ) = −u(τ) − 1 + mg

KL0
ü(τ) = −u(τ) + Γ − 1,

where
Γ = mg

KL0
.
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(4) Solve the dimensionless equation and then convert back to dimensional form, using initial conditions
y(0) = Y0 and ẏ(0) = V0.
Show Answer:

Change of varible to simplify:

ü(τ) = −u(τ) + Γ − 1,

ü(τ) = −(u(τ) − Γ + 1),
q(τ) = u(τ) − Γ + 1
q̈(τ) = ü(τ) = −q(τ)

Assume:

q(τ) = A sin ωτ + B cos ωτ

q̇(τ) = Aω cos ωτ − Bω sin ωτ

q̈(τ) = −q = −Aω2 sin ωτ − Bω2 cos ωτ

−A sin ωτ − B cos ωτ = −Aω2 sin ωτ − Bω2 cos ωτ

0 = A(1 − ω2) sin ωτ + B(1 − ω2) cos ωτ

ω2 = 1
ω = ±1

q(τ) = ±A sin τ + B cos τ.

From the general solution apply the initial conditions:

q(τ) = u(τ) − Γ + 1 = y(t)
L0

− Γ + 1

q(0) = ±A sin 0 + B cos 0 = Y0

L0
− Γ + 1

B = Y0

L0
− Γ + 1

q̇(τ) = ±A cos τ − B sin τ

ẏ(t) = L0

√
K

m
u̇(τ)

q̇(τ) = u̇(τ) =
√

m

K

ẏ(t)
L0

q̇(0) = ±A cos 0 − B sin 0 =
√

m

K

V0

L0

±A =

√√√√mV 2
0

KL2
0

q(τ) =

√√√√mV 2
0

KL2
0

sin τ + ( Y0

L0
− Γ + 1) cos τ
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Now convert back to y(t):
y(t) = L0(q(τ) + Γ − 1)

= L0(

√√√√mV 2
0

KL2
0

sin τ + ( Y0

L0
− Γ + 1) cos τ + Γ − 1)

=
√

m

K
V0 sin τ(t) + (Y0 − L0(Γ − 1)) cos τ(t) + L0(Γ − 1)

y(t) = L1 + (Y0 − L1) cos ω0t + V0

ω0
sin ω0t

where

ω0 =
√

K

m
,

and
L1 = L0(1 − Γ) = L0 − g

ω2
0
.

Question 4. One particle, force depends position and velocity A damped harmonic oscillator has equation
of motion:

mẍ = −Kx − Bẋ

(1) Find a general solution x(t).
Show Answer:

mẍ = −Kx − Bẋ

ẍ = −ω2
0x − βẋ

where, ω0 =
√

K

m
and β = B

m

Guess: x(t) = A exp Ωt

ẋ(t) = AΩ exp Ωt

ẍ(t) = AΩ2 exp Ωt

AΩ2 exp Ωt = −Aω2
0 exp Ωt − AβΩ exp Ωt

0 = A(Ω2 + ω2
0 + βΩ) exp Ωt

0 = Ω2 + ω2
0 + βΩ

Ω = 1
2(−β ±

√
β2 − 4ω2

0)

x(t) = A exp
[1
2(−β +

√
β2 − 4ω2

0)t
]

+ B exp
[1
2(−β −

√
β2 − 4ω2

0)t
]

(2) Assuming B > 0 what kind of solution will you get if
(a) (B/m)2 > 4K/m.
(b) (B/m)2 > 4K/m.
(c) (B/m)2 = 4K/m.
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Show Answer:

(B/m)2 > 4K/m

β2 > 4ω2
0

−β ±
√

β2 − 4ω2
0 ∈ R

The solution will exponentially decay.
(B/m)2 < 4K/m

β2 < 4ω2
0

−β ±
√

β2 − 4ω2
0 ∈ C

The solution will exponentially decay and oscillate because of the imaginary part.
(B/m)2 = 4K/m

β2 = 4ω2
0

−β ±
√

β2 − 4ω2
0 = −β

The solution will exponentially decay like exp (−β/2).

4.1. Lagrangian Mechanics Review.

Lagrangian mechanics is equivalent to Newtonian mechanics, but it has two major advantages. 1) It
is relatively easy to treat generalized coordinates. This make changing coordinates easier and allows the
elimination of constraints very simple. 2) It is easy to include continuous symmetries and each continuous
symmetry leads to a conserved quantity. The three most important symmetries space-translation, rotation,
and time translation lead to conservation of momentum, angular momentum, Energy. The most general
version of Lagrangian mechanics has a an input the Lagrangian function L(t) = L(qk(t), q̇k(t), t). The qk

are K generalized coordinates. The dynamics are determined from requiring that the action,

S =
∫ t2

t1
L(t)dt

is stationary (i.e., δS = 0). Using variational calculus the stationary requirement lead to K Euler-Lagrange
equations:

p̈k = ∂L

∂qk

,

where
pk = ∂L

∂q̇k

is the generalized momentum.
To calculate the Lagrangian we use the definition in Cartesian coordinate x⃗n(t), such that:

L(x⃗n(t), ˙⃗xn(t)) = T ( ˙⃗xn(t)) − V (x⃗n(t)),
where

T ( ˙⃗xn(t)) = 1
2mn

˙⃗x2
n(t),
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is the kinetic energy and V (x⃗n(t)) is the potential energy of the system. In Cartesian coordinates there are
N particles in D dimensions. The vector part of the coordinates x⃗n(t) represents the D dimension of the
space that the particles are in and the subscript represents the number of the nth particle from a total of
N particles. The Lagrangian depends on a total of DN coordinates and DN velocities ˙⃗xn(t). To convert
to generalized coordinates a change of variables is used:

x⃗n = x⃗n(qk(t), q̇k(t), t)
along with an inverse transform:

qk = qk(x⃗n(t), ˙⃗xn(t), t).
In the transformation, the number of coordinates (degrees of freedom) K in the generalize coordinates
must equal the number of degrees of freedom in the Cartesian coordinates DN . However, if the qk(t)
are chosen to include constrained variables then they can be easily eliminated from the final equations of
motion.

Question 5. Equivalence of Lagrangian and Newtonian mechanics
(1) A general Lagrangian is given by

L(x⃗n(t), ˙⃗xn(t)) = 1
2mn

˙⃗x2
n(t) − V (x⃗n(t)).

Show that the Euler-Lagrange equation leads to the Newtonian equations of motion for particles
in a conservative potential V (x⃗n(t)).
Show Answer:

L(x⃗n(t), ˙⃗xn(t)) = 1
2mn

˙⃗x2
n(t) − V (x⃗n(t))

p⃗n = ∂L

∂ ˙⃗x
= mn

˙⃗xn(t)

˙⃗pn = −∂V

∂x⃗

mn
¨⃗xn(t) = −∂V

∂x⃗
= F⃗n

Question 6. Double Pendulum A double pendulum consists of a mass m1 at postion x⃗1 connected by a
rigid mass-less rod of length L1 to a rigid immovable beam. A second rigid mass-less beam of length L2
connects m1 to a second mass m2 at position x⃗2. The masses are confined to the x-y plane with gravity
pointing downward in the −ŷ direction.

(1) How many degrees of freedom are needed to represent the positions x⃗1 and x⃗2 in Cartesian coordi-
nates?
Show Answer:

4. Each vector requires 2 dimensions and there are 2 positions so a total of 2 ∗ 2 = 4 degrees of
freedom are needed. Explicitly (x1, y1, x2, y2) define the two vectors x⃗1 = (x1, y1) and x⃗2 = (x2, y2).

(2) Constraints:
(a) How many constrains of the form f(x⃗n) = 0 are there?
(b) Express them in the form f(x⃗n) = 0.
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(c) Are there any other constraints?
Show Answer:
(a) 2. The distance between each mass.
(b) x⃗1 · x⃗1 − L2

1 = 0 and (x⃗2 − x⃗1) · (x⃗2 − x⃗1) − L2
2 = 0 = d2

12 − L2
2

(c) No. The beam position represents a constraint, but it is not included in the Cartesian coor-
dinates. The constraint to move in a plane z1 = 0 and z2 = 0 is also not in the Cartesian
coordinate description.

(3) Write out a coordinate transformation x⃗n = x⃗n(qk), which will include two generalized coordinates
that have zero time derivatives. This is always possible with constraints of the form: f(x⃗n) = 0
since

df(x⃗n)
dt

= df(x⃗n)
dx⃗n

dx⃗n

dt
= df(x⃗n)

dx⃗n

˙⃗xn = 0,

and
df(x⃗n)

dx⃗n

̸= 0

because there is a constraint and therefore ˙⃗xn = 0.
Show Answer:

x⃗n = x⃗n(qk) = x⃗n(L1, θ1, L2, θ2)
x⃗1 = l⃗1

x⃗2 = l⃗1 + l⃗2

l⃗1 = (L1 cos θ1, L1 sin θ1)
l⃗2 = (L2 cos θ2, L2 sin θ2)

(4) What is the inverse transform qk = qk(x⃗n)?
Show Answer:

qk = qk(x⃗n) = qk(x⃗1, x⃗1)
L1 = |x⃗1|
L2 = |x⃗2 − x⃗1|

θ1 = arctan
(

y1

x1

)
θ2 = arctan

(
y2 − y1

x2 − x1

)

(5) What is the Lagrangian in Cartesian coordinate, x⃗n?
Show Answer:

L(x⃗n, ˙⃗xn) = T ( ˙⃗xn) − V (x⃗n)

= 1
2

(
m1 ˙⃗x2

1 + m2 ˙⃗x2
2

)
− V (x⃗n)
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The potential V (x⃗n) is due to gravity so:
V (x⃗n) = m1g(x⃗1 · ŷ) + m2g(x⃗2 · ŷ)

= m1gy1 + m2gy2

and
L(x⃗n, ˙⃗xn) = 1

2
(
m1 ˙⃗x2

1 + m2 ˙⃗x2
2

)
− m1gy1 − m2gy2

(6) What is the Lagrangian in generalized coordinate, qk?
Show Answer:

L(x⃗n, ˙⃗xn) = 1
2

(
m1 ˙⃗x2

1 + m2 ˙⃗x2
2

)
− m1gy1 − m2gy2

˙⃗x1 = ˙⃗
l1 = d

dt
(L1 cos θ1, L1 sin θ1)

= (−L1θ̇1 sin θ1, L1θ̇1 cos θ1)
˙⃗x2

1 = ˙⃗
l2
1 = L2

1θ̇
2
1(sin2 θ1 + cos2 θ1) = L2

1θ̇
2
1

˙⃗
l2 = d

dt
(L2 cos θ2, L2 sin θ2)

= (−L2θ̇2 sin θ2, L2θ̇2 cos θ2)
˙⃗
l2
2 = L2

2θ̇
2
2

˙⃗x2 = ˙⃗
l2 − ˙⃗

l1

˙⃗x2
2 = ˙⃗

l2
2 − 2 ˙⃗

l2 · ˙⃗
l1 + ˙⃗

l2
1

˙⃗
l2 · ˙⃗

l1 = L1L2θ̇1θ̇2(sin θ1 sin θ2 + cos θ1 cos θ2)
= L1L2θ̇1θ̇2 cos θ1 − θ2

˙⃗x2
2 = L2

1θ̇
2
1 + L2

2θ̇
2
2 − 2L1L2θ̇1θ̇2 cos (θ1 − θ2)

L = 1
2

[
(m1 + m2)L2

1θ̇
2
1 + m2(L2

2θ̇
2
2 − 2L1L2θ̇1θ̇2 cos (θ1 − θ2)

]
− m1gL1 sin θ1 − m2gL2 sin θ2

(7) Find the generalized momenta for the non-constrained variables?
Show Answer:

L = 1
2

[
(m1 + m2)L2

1θ̇
2
1 + m2(L2

2θ̇
2
2 − 2L1L2θ̇1θ̇2 cos (θ1 − θ2)

]
− m1gL1 sin θ1 − m2gL2 sin θ2

pθ1 = ∂L

∂θ̇1
= (m1 + m2)L2

1θ̇1 − m2L1L2θ̇2 cos (θ1 − θ2)

pθ2 = ∂L

∂θ̇2
= m2L

2
2θ̇2 − m2L1L2θ̇1 cos (θ1 − θ2)
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(8) Find the Hamiltonian?
Show Answer:

H =
K∑

k=1
pkq̇k − L

= pθ1 θ̇1 + pθ2 θ̇2

= (m1 + m2)L2
1θ̇

2
1 + m2(L2

2θ̇
2
2 − 2L1L2θ̇1θ̇2 cos (θ1 − θ2) − L

H = 1
2

[
(m1 + m2)L2

1θ̇
2
1 + m2(L2

2θ̇
2
2 − 2L1L2θ̇1θ̇2 cos (θ1 − θ2)

]
+ m1gL1 sin θ1 + m2gL2 sin θ2

(9) Use the Euler-Lagrange equations to find the equations of motion for the non-constrained variables?
Show Answer:

L = 1
2

[
(m1 + m2)L2

1θ̇
2
1 + m2(L2

2θ̇
2
2 − 2L1L2θ̇1θ̇2 cos (θ1 − θ2)

]
− m1gL1 sin θ1 − m2gL2 sin θ2

ṗθ1 = ∂L

∂θ1
= m2L1L2θ̇1θ̇2 sin (θ1 − θ2) − m1gL1 cos θ1

ṗθ2 = ∂L

∂θ2
= −m2L1L2θ̇1θ̇2 sin (θ1 − θ2) − m2gL2 cos θ2

where
ṗθ1 = (m1 + m2)L2

1θ̈1 − m2L1L2(θ̈2 cos (θ1 − θ2) − θ̇2(θ̇1 − θ̇2) sin (θ1 − θ2))
ṗθ2 = m2L

2
2θ̈2 − m2L1L2(θ̈1 cos (θ1 − θ2) − θ̇1(θ̇1 − θ̇2) sin (θ1 − θ2))
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