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One has the relationship"

j'= —1Av'= c curlM'+ (BP'/R), (812)

where P' and M' represent the electric and magnetic
polarization. Since the plasma is nonmagnetic, one has
M' =0. Using the relationship P'= P expi(k r ~t),—one
can express the equality (812) as follows:

Combining (811) and (813), one obtains

(~'/1Ve) P—PE~T(k P)k//em]+ (e/nz) E=0. (814)

Using the relationship (74), Eq. (814) can be
expressed as

(aP/Ne) P—$s'(k P)k/31Ve)+ (e/m) E=0, (815)
or

v = (iso/1lt e)P. (813)
cu'P —(s'/3) (k P)k+ (co t2/4~) E=0, (816)

"See, for instance, W. K. H. Panofsky and Melba Phillips,
Classical L~lectricity and 3fagnet7'sm (Addison-Wesley Publishing
Company, Inc. , Reading, Massachusetts, 1955).

where &uP =4vrlVe'/m.
Equation (816) leads directly to the relationships

(79), (83), and (84) given in the text.
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The study of a two-dimensional system consisting of 870 hard-disk particles in the phase-transition
region has shown that the isotherm has a van der Waals-like loop. The density change across the transition
is about 4 j& and the corresponding entropy change is small.

A STUDY has been made of a two-dimensional
system consisting of 870 hard-disk particles.

Simultaneous motions of the particles have been calcu-
lated by means of an electronic computer as d.escribed
previously. The disks were again placed in a periodi-
cally repeated rectangular array. The computer program
has been improved such that about 200000 collisions
per hour can be calculated by the LARC computer
regardless of the number of particles in the system.
This speed made it possible to follow large systems for
several million collisions.

It became necessary to study larger systems in the
phase transition region when for smaller ones in three
dimensions, it did not seem to be possible for the two
phases to exist together in equilibrium. ' ' Even in the
largest three-dimensional system investigated with the
improved program (500 hard spheres), the particles
were either all in the Quid phase or all in the crystalline
phase. The system would typically remain in one phase
for many collisions. The occasional shift from one phase
to the other would be accompanied by a change of
pressure. The equation of state was represented by two
disconnected branches overlapping in the density range
of the transition, since with the limited number of phase

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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interchanges it was not possible to average the two
branches.

Two-dimensional systems were then studied, since
the number of particles required to form clusters of
particles of one phase of any given diameter is less than
in three dimensions. Thus, an 870 hard-disk system is
effectively much larger than a 500 hard-sphere system.
First, however, it was necessary to establish that small
two-dimensional systems behave analogously to the
three-dimensional systems. This is illustrated in Fig. 1
by the two disconnected branches drawn lightly through
the triangular points for a 72-particle system. In that
Qgure, the reduced pressure pA o/ATkT is plotted against
the reduced area A/Ao, where Ae is the area of the
system at close packing. In the region of A/A 0 from 1.33
to 1.35 the system Quctuated infrequently between a
high-pressure Quid branch and a low-pressure crystalline
branch, while at A/Ao of 1.31 and higher densities the
solid phase was always stable.

For the larger 870-particle system, however, the two
phases exist side by side. One piece of evidence for this
coexistence is the cathode-ray tube pictures described
earlier (see Fig. 2). The trajectories of the particles
plotted on the oscilloscope show regions where the
particles are localized (crystallites) in between regions
of mobile particles (Quid). Further evidence is the
characteristically large pressure fluctuations in the
phase transition region where two states can exist with

aim, ost equal probability. The extent of the Auctuations
in a typical run of about 10 million collisions is obtained
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FIG. 1. The equation of state of hard disks
in the phase transition region.

by breaking the run into intervals of 50 thousand
collisions (about 100 collisions for each particle) and
determining the average pressure in each interval. The
light vertical lines at various densities (Fig. 1) extend
from the maximum to the minimum pressure found
among these intervals. As can be seen, the fluctuations
are much larger in the phase transition region than in
the pure solid (A/Ae(1. 26) and pure fiuid (A/Ae)1.33) phases and they are also larger in the middle of
the phase transition region than near the ends. The
medium vertical lines in Fig. 1 indicate the middle range
of the fluctuations, that is, 4 of the intervals show
pressures above the top of the vertical line and 4 show
pressures below the bottom of the line. For the shorter
runs at A/A e of 1.32 and 1.29 only this medium vertical
line could be drawn.

The heavy vertical lines in Fig. 1 indicate the esti-
mated accuracy of the average pressure determination
at each density. These estimates are made by comparing
several runs of 10 million collisions each with various
starting conditions. The comparison was typically
within I%%u~ at a few selected densities. The fact that the
pressures calculated with varying starting conditions
agree rather closely is the only indication that phase
space has been adequately sampled. Four diferent
starting conditions have been used: (1) all the particles
are located in lattice positions with only one particle in
motion; (2) all particles are in lattice positions and in
motion with randomly selected velocities; (3) the
starting configuration for a run at one density is taken
from an instantaneous configuration at a lower density,

having been effectively changed by increasing the
diameter of the particles; and (4) the same as (3) except
a higher density configuration is used as an initial low-
density one.

The smooth curve drawn through the heavy vertical
sections in Fig. 1 clearly shows a van der Waals loop-like
behavior for the equilibrium state of a finite system. To
confirm this it was found that decreasing the density
from A/Ae of 1.29 to 1.30 by procedure (4) above,
increased the average pressure. Similarly, increasing the
density from A/Ae of 1.285 to 1.280 and subsequently
to 1.275 by procedure (3) decreased the average pressure
in both cases, although, immediately after increasing
the density, the pressure at 1.275 was higher for some
millions of collisions. This shows that the density must
be increased very slowly near the solid region or other-
wise the particles will be locked into a disordered con-
figuration. Thus, on increasing the density by procedure
(3) from A/Ae of 1.275 to 1.26 the crystalline region of
phase space (lower value) became disconnected from
the disordered region (upper value) as seen in I'ig. 1,
since the extremes of the pressure Quctuations no longer
overlap. A further increase in density of the disordered
or glass-like configuration at A/A e of 1.26 to 1.25 defines
the dashed line in Fig. 1.

It has been shown that in an infinite system the
isotherms for this system would always have to be of
negative or at most zero slope. ' Thus, the loop could not
exist. The existence of a loop for 6nite systems probably
derives from the fact that the constraint of constant
density is imposed over a region occupied by however

many particles are dealt with. This constraint restricts

Fic. 2. The traces of the centers of particles in the phase-
transition region showing Quid and crystalline regions. The
horizontal and vertical lines represent an arbitrary grid.

'L. van Hove, Physica 15, 951 (1949).
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the configurations which can be reached in a 6nite
system, that is, for example, a Quid in equilibrium with
crystallites of average size greater than the number of
particles dealt with is impossible to achieve. This con-
straint for the small systems previously investigated
resulted in stabilization of the predominant phase.
Thus, the system was either all solid and when a rare
Quctuation disordered enough of the system, it became
completely Quid. For the 870-particle system the con-
straint again stabilizes the more abundant phase
causing the pressure to be high on the Quid side and low
on the crystal side. It thus seems that the phase separa-
tion which might occur in infinite systems is not
complete in finite systems, since a sizable portion of the
system lies in the Quid-crystal boundary region and this
region is of intermediate density and evidently takes on
more of the character of the predominant phase.

The horizontal line in Fig. 1 drawn at pA 0/NkT =7.72
and extending from A/A e of 1.266 to 1.312 corresponds
to the usual "equal area" rule. If the phase transition
for an infinite system is of first order at the pressure

indicated by this straight line, then the resulting en-

tropy change across the transition BS/Xk is phA/Xk T
=0.36. The change of entropy across the same density
interval corresponding to the expansion of the one
particle cell as calculated by the free volume theory is
0.30. This indicates that the change of communal
entropy (0.06) across the transition is very much smaller
than unity. This is hardly in accord with the view' that
the di6erence between a dense Quid and a solid is one
of the accessibility of the entire space in the Quid and
localization of a molecule in a solid.

The complete equation of state and comparisons of
it with the predictions of various theories will be the
subject of further publications.

We are deeply indebted to Mary Ann Mansigh and
Norman Hardy for their invaluable help in program-
ming, and to Dr. Sidney Fernbach of the Livermore
Computing Division for his cooperation.

5 J. O. Hirschfelder, D. P. Stevenson, and H. Kyring, J. Chem.
Phys. 5, 896 (1937);however, see also O. K. Rice, J. Chem. Phys.
6, 476 (1938).
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The thermal conductivity of liquid helium contained in a cylindrical stainless-steel capillary 0.080 cm in
diam by 5.16 cm long has been studied between 0.9'K and the ) point. The relation between temperature
gradient and heat current density W for heat currents greater than the critical heat current density W, is
best expressed in the form gradT=DW", where D is a temperature-dependent constant and n varies from
about 3.0 at low temperatures to about 3.5 above 1,7'K. Below W, the .temperature gradient is much
smaller, and is determined entirely by the viscosity of the normal component. W, was measured over the
entire temperature range by a combination of two methods, which are in complete agreement in the region
of overlap. The results suggest that, below about 1.7'K, W, is the result of some sort of normal turbulence
describable by a Reynolds number involving the normal Quid velocity but the total density. At higher tem-
peratures such an explanation is no longer adequate, and some other type of critical velocity must be
invoked.

I. INTRODUCTION

IQUID helium II has an unusually high thermal
~ ~ conductivity, which, in terms of the two-Quid
model, can be explained by an internal convection of
the normal and superfluid components. According to
this model, normal Quid Qows away from the source of
heat with a velocity v„which is related to the heat
current density W by the equation

v„=W/pST,

where p is the density, S the entropy per unit mass,
and T the temperature. The superfluid flows in the

*Operated with support from the Q. $. Army, Navy, and Air
Force,

opposite direction with a velocity v, which is deter-
mined by the additional condition that there be no net
mass Qow,

ps vss+ psvs =Os (2)

where p„and p, are, respectively, the normal and super-
Quid densities.

As long as W is sufficiently small, the only dissipative
mechanism present is the viscosity of the normal com-
ponent p„.For a cylindrical channel of radius r, the
relation between temperature gradient and heat current
density is then given by ' '

W = —(r'p S'T/8'„)grad T. (3)
' F. London and P. R. Zilsel, Phys. Rev. 74, 1148 (1948).
' Q. J. Garter and J. H. Mellink, Physica 15, 285 (1949).




