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Chapter 3:Chapter 3:
XX--ray Diffraction and Crystal Structure ray Diffraction and Crystal Structure 

Determination Determination 

LECTURE #06

Learning ObjectivesLearning Objectives

• To describe crystals in terms of the stacking of planes.

• How to use a dot product to solve for the angles 
between planes and directionsbetween planes and directions

• Describe a way to determine the crystal structure of a 
material using X-rays.

• Pages 83-87.
Relevant Reading for this Lecture...
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Recap of Miller IndicesRecap of Miller Indices

1) Last time we showed how to use vectors and 
Miller indices to define planes and directions in 
crystals.

2) Let’s start with a worked example of (2) and 
then move into today’s lecture.
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In class example #2:  SOLUTION

In a cubic unit cell, draw correctly a vector with indices [146].

Select your origin.  Put it

wherever you want to.

This step is the 
opposite of 
clearing 
fractions!

O
y

[1 4 6]

. 6

These fractions denote

how far to step in the
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indices
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1
6
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6 3

6
6 1

x

, , or  directions

(away from the origin).

x y z

NOTE:  It would be “wise” to select the origin so that you can complete the 
desired steps within the cell that you are using!
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In class example #3:

In a cubic unit cell, draw correctly a vector with indices [542].

: [5 4 2]
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NOTE:  It would be “wise” to select the origin so that you can complete the 
desired steps within the cell that you are using!
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MILLER INDICES FOR A SINGLE MILLER INDICES FOR A SINGLE PLANEPLANE

z

What is the plane bounded by the dash lines?

z

x y z
Intercept 1 3/4 1/2

Reciprocal 1/1 4/3 2/1
Clear 3 4 6

x

yINDICES 3 4 6

(346)
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• When materials deform, they 
normally prefer to deform via 
shear in the closest packed 
directions on the closest

Remember this?Remember this? σ

 

directions on the closest 
packed planes!

The tensile axis is in a 
different direction than the 
shear direction.

[Direction]

σ

We’ll address this in more 
detail when we discuss 
mechanical properties!

(plane)

video6

[Plane normal]
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Sometimes it is necessary to determine the 
angle between a couple of directions or g p

planes.

Sometimes it may be necessary to 

Use the cosine law

determine whether a direction lies on a 
particular plane.

Use the dot product

7

Vector dot products
“a dot b” = sum of each 

vector index with its 
counterpart vector 

1 2 3( , , )a a aa



E l Fi d h d d f d b if (1 2 3) d b (4 5 6)

1 2 3( , , )b b bb
a · b = a1 x b1 + a2 x b2 + a3 x b3

Example: Find the dot product of a and b if a = (1,2,3) and b = (4,5,6)

(4,5,6(1 ), 2,3) 1 4 10 12 3 84 325 6           a b· ·
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Finding the angle between 2 vectors
a•b also equals the magnitude of a
times the magnitude of b times the 
cosine of the angle between vectors.

1 2 3( , , )a a aa



Vector Magnitudes1 2 3( , , )b b bb

1 21 2 33 cosa b baba        ab ba

2 2 2 2 2 2
32 1 21 3 b ba a a b     ba

·

Re-arrange and solve for cos θ.  This yields the familiar cosine law:

1 2 3

2 2 2

1 2

1 2 3
2 2 2

1 2 3

3cos
a a ab

b b ba

b b

a a
     
 

    

a
a

b
b
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Finding the angle between 2 vectorsFinding the angle between 2 vectors

1 2 3( , , )a a aa

Example: Find the angle between a and b if a = (1,2,3) and b = (4,5,6)

1 2 3( , , )b b bb



2

1

2 22 22 4 5 6

32
cos 0.9746

14 77

cos (0

1

.9746) 12

2 3

1 2

. 3

3

9

4 5 6

 

    
   

    

  

a
a

b
b

·
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Angle between planes: Dot Product

We can define planes using vectors perpendicular to them!

Normal vectors have the same indices as the planes!

D D   
 

cosD D D D   
   


D u a v b w c     
 

D u a v b w c        
 

·

2 2 2 2 2 2
cos

( ) ( ) ( )

D D u u v v w w
D D u v w u v w


        


      

 

Equations work with Miller indices!
11

How to tell if a direction lies on a planeHow to tell if a direction lies on a plane

If the dot product of the vector and plane = 0,

then the vector lies on the plane

cos 0D P D P u h v k w l         
   

[ ]

D ua vb wc

uvw

  
  

( )

P ha kb lc

hkl

  
  

·

12

[ ]uvw

( )hkl

[ ]hkl
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Which members of the <111> family of directions lie within the (110) plane?

In Class Example

13

Which members of the <111> family of directions lie within the (110) plane?

In Class Example:  SOLUTION

The [110] direction is perpendicular (i.e., normal) to the (110) plane.

The directions that lie on this plane will give a zero dot product with [110].

Now substitute in the members of the <111> family and see which give a zero 
dot product.  The <111> family is:

Substitute each direction in for [hkl] as shown below:

[110] [ ] 1 1 0hkl h k l     

[111] , [111] , [111] , [111] , [111] , [111] , [111] , [111]

·

Substitute each direction in for [hkl] as shown below:

SOLUTION:  [111],[111],[111], and [111]

[110] [111] 1 1 1 1 0 1 2

[110] [111] 1 1 1 1 0 1 0

...etc

      

       


 This one is on the (110) plane.

Look for all instances where the dot product = zero.

·

·
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Atomic packing and the unit cellAtomic packing and the unit cell

• We can visualize crystals structures as stacked planes of atoms.

A A
BB

(a) Non-close-packed layer A. (b) Stack next layer on B sites. (c) The BCC unit cell

BB

(a) A square grid of spheres.  (b) A second layer, B, nesting 
in the first, A; repeating this sequence gives ABABAB…

Packing resulting in (c) the BCC crystal structure.

Yields ABABAB… stacking. 
BCC packing.

15

2

Now that we understand planes – how do crystal 
structures compare?

Close Packed Stacking Sequence in FCC

16
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BB
C

BB
CC

•  ABCABC... Stacking Sequence
•  2D Projection

What is the Close Packed Stacking Sequence in FCC?What is the Close Packed Stacking Sequence in FCC?

A sites

B B

BB B

C sites

C C

C
A

B

B sitesB sites B B

BB B
C C

C
AA

C C

C

A
•  FCC Unit Cell B

C

5

17

•  ABAB... Stacking Sequence

• 3D Projection • 2D Projection

Hexagonal CloseHexagonal Close--Packed Structure (HCP)Packed Structure (HCP)

•  3D Projection •  2D Projection

c

A sites

B sites

A sites A: Bottom layer

B: Middle layer

A: Top layer

•  Coordination # = 12

•  APF = 0.74

Adapted from Fig. 3.3(a),
Callister 7e. 

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

• c/a = 1.633

a

2
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A comparison of the stacking sequence of close packed A comparison of the stacking sequence of close packed 
planes in HCP & FCC crystalsplanes in HCP & FCC crystals

FCC

Atoms in this plane lie 
directly above the bottom 
plane

Atoms in the C plane do 

HCP

p
not lie directly above 
either A or B planes

Top View Side View

Atoms in this plane 

lie directly above this plane

19

A comparison of HCP and FCC stacking sequence of A comparison of HCP and FCC stacking sequence of 
close packed planesclose packed planes

FCCHCP

This is similar to Figs. 3.30 – 3.32 on pages 78 and 79 of your book.
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A comparison of the stacking sequence of close packed A comparison of the stacking sequence of close packed 
planes in HCP & FCCplanes in HCP & FCC

FCC This is the 
face of the 
FCC unit 
cell

HCP unit 
cell

HCP

Just another visual to help you out
21

How Can We Determine Crystal Structures?How Can We Determine Crystal Structures?

• Measure the inter-planar spacing.
• The inter-planar spacing in a particular direction is 

the distance between equivalent planes of atoms.the d stance between equ valent planes of atoms.
– Function of lattice parameter
– Function of crystal symmetry

y

(100)
(110)

z

(i.e., how atoms are arranged)

a

x

(210)

Assuming 
no intercept 
on z-axis

d210

22
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How do we Measure this Spacing?How do we Measure this Spacing?
XX--Ray  DiffractionRay  Diffraction

• Diffraction gratings must have spacing comparable to the wavelength 
() of diffracted radiation (X-rays).  

• In crystals: diffraction gratings are planes of atoms. Spacing is the 
distance between parallel planes of atoms.

• We can only resolve a spacing that is bigger than .
(This is why we use X-rays… they are approximately the same size as planar spacings)

23

Bragg’s Law:Bragg’s Law:

Bragg’s Law:

2 sinn d 
gg

Where:

• is half the angle between the diffracted beam and the original beam direction

• is the wavelength of X-ray

•d is the interplanar spacing 
24
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2 sinn d 

Bragg’s Law:Bragg’s Law:

0

2 2 2 2sinhkl

ad
d

n h k l




  
 

Interplanar 
spacing:

d

2 sinn d 
Lattice parameter

25
d

Miller IndicesOrder of 
reflection
(integer)

25

XX--Ray  Diffraction PatternRay  Diffraction Pattern

(110)

z

c

z

y

c

z

y

c

(110)

(200)

(211)

In
te

ns
ity

 (
re

la
tiv

e)

x

y
a b

c

x

y
a b

x

y
a b

Adapted from Fig. 3.40, Callister
and Rethwisch 4e. P. 86

Diffraction angle 2

Diffraction pattern for polycrystalline  -iron (BCC) 

3
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Why do different crystals diffract Why do different crystals diffract 
different planes?different planes?

It’s based on atomic arrangement.

Thus, there are rules that define which planes diffract.

Some reflections aren’t observed.   WHY?

Atomic arrangement prevents it.
27

Why is the Why is the {100} {100} not an allowed reflection in BCC?not an allowed reflection in BCC?

d

Diffraction from (001) planes.
Diffracted X-rays are in phase
(i.e., they line up perfectly).

001d
002d

Diffraction from (002) planes.
X-rays diffracted from (002)
are shifted 180° out of phase 

(i.e., they do not line up perfectly).

λ λ

Sums to 
zero.

Sums to 
twice as 

large

Related to equations 3.16 and 3.16 on page 84.28
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What would be the (hkl) indices for the three lowest diffraction-angle peaks 
for BCC metal? 

In Class Example

29

First, satisfy reflection criteria for BCC (i.e., h + k + l = even number).

Second, combine d-spacing equation with Bragg’s Law:

What would be the (hkl) indices for the three lowest diffraction-angle peaks 
for BCC metal? 

In Class Example:  SOLUTION

d 

Re-arrange so that we can determine θ; you will get:

Now we plug in hkl values such that the reflection rule is satisfied.  NOTE: smallest θ
corresponds to smallest combination of hkl values.

0

2 2 2 2sinhkl

ad
d

n h k l




  
 

2 2 2sin
2 o

h k l
a

   

corresponds to smallest combination of hkl values.

2 2 2

100 1
110 2
111 3
200 4
210 5
211 6

Indices h k l h k l BCC
odd no

odd no

odd no

   

even YES

even YES

even YES

A great variation on this 
question would be:  
What are the reflection angles

30
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• We can use the dot product as a means to identify angles between 
planes and directions (this will be important when we get to 
mechanical behavior!)

• Crystal structure can be determined by measuring inter-planar 

SummarySummary

spacing. 

• We use X-ray Diffraction to measure this spacing. 

• Inter-planar spacing can be calculated using:

• Bragg’s Law:

0

2 2 2 2sinhkl

ad
d

n h k l




  
 

2 id • Bragg s Law:

• Depending on crystal types, certain {hkl} planes will diffraction and 
can be used to identify the crystal structure. We have a set of 
selection rules to help us identify them. (You do not need to 
memorize these rules – they would be given to you on an exam, if 
a question was asked.) 

2 sinn d 
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