Chapter 3: X-ray Diffraction and Crystal Structure Determination

Learning Objectives

- To describe crystals in terms of the stacking of planes.
- How to use a dot product to solve for the angles between planes and directions
- Describe a way to determine the crystal structure of a material using X-rays.

Relevant Reading for this Lecture...

Recap of Miller Indices

1) Last time we showed how to use vectors and Miller indices to define planes and directions in crystals.
2) Let's start with a worked example of (2) and then move into today's lecture.

In class example \#2: SOLUTION

In a cubic unit cell, draw correctly a vector with indices [146].

NOTE: It would be "wise" to select the origin so that you can complete the desired steps within the cell that you are using!
3

In class example \#3:

In a cubic unit cell, draw correctly a vector with indices [542].

\qquad
\qquad

NOTE: It would be "wise" to select the origin so that you can complete the desired steps within the cell that you are using!

MILLER INDICES FOR A SINGLE PLANE

What is the plane bounded by the dash lines?

Remember this?

- When materials deform, they normally prefer to deform via shear in the closest packed directions on the closest packed planes!

The tensile axis is in a different direction than the shear direction.

We'll address this in more detail when we discuss mechanical properties!

Sometimes it is necessary to determine the angle between a couple of directions or planes.

Use the cosine law

Sometimes it may be necessary to determine whether a direction lies on a particular plane.

Use the dot product

Vector dot products

"a dot b" = sum of each vector index with its counterpart vector
$\vec{a} \cdot \vec{b}=a_{1} \times b_{1}+a_{2} \times b_{2}+a_{3} \times b_{3}$

Example: Find the dot product of \boldsymbol{a} and \boldsymbol{b} if $\boldsymbol{a}=(1,2,3)$ and $\boldsymbol{b}=(4,5,6)$

$$
\boldsymbol{a} \cdot \boldsymbol{b}=(1,2,3) \cdot(4,5,6)=1 \cdot 4+2 \cdot 5+3 \cdot 6=4+10+18=32
$$

Finding the angle between 2 vectors

Re-arrange and solve for $\cos \theta$. This yields the familiar cosine law:

Finding the angle between 2 vectors

Example: Find the angle between \boldsymbol{a} and \boldsymbol{b} if $\boldsymbol{a}=(1,2,3)$ and $\boldsymbol{b}=(4,5,6)$

$$
\begin{gathered}
\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}=\frac{1 \cdot 4+2 \cdot 5+3 \cdot 6}{\sqrt{1^{2}+2^{2}+3^{2}} \times \sqrt{4^{2}+5^{2}+6^{2}}}=\frac{32}{\sqrt{14} \sqrt{77}}=0.9746 \\
\theta=\cos ^{-1}(0.9746)=\underline{\underline{12.93^{\circ}}}
\end{gathered}
$$

Angle between planes: Dot Product

We can define planes using vectors perpendicular to them!
Normal vectors have the same indices as the planes!

$$
D=u \cdot \vec{a}+v \cdot \vec{b}+w \cdot \vec{c} \quad D^{\prime}=u^{\prime} \cdot \vec{a}+v^{\prime} \cdot \vec{b}+w^{\prime} \cdot \vec{c}
$$

$$
\vec{D} \cdot \vec{D}^{\prime}=|\vec{D}| \cdot\left|\vec{D}^{\prime}\right| \cos \delta
$$

$$
\cos \delta=\frac{\vec{D} \cdot \vec{D}^{\prime}}{|\vec{D}| \cdot\left|\vec{D}^{\prime}\right|} \frac{u \cdot u^{\prime}+v \cdot v^{\prime}+w \cdot w^{\prime}}{\sqrt{u^{2}+v^{2}+w^{2}} \sqrt{\left(u^{\prime 2}\right)+\left(v^{\prime 2}\right)+\left(w^{\prime 2}\right)}}
$$

How to tell if a direction lies on a plane

If the dot product of the vector and plane $=0$, then the vector lies on the plane

$$
\begin{array}{cc}
\vec{D}=u \vec{a}+v \vec{b}+w \vec{c} & \vec{P}=h \vec{a}+k \vec{b}+l \vec{c} \\
{[u v w]} & (h k l)
\end{array}
$$

$\vec{D} \cdot \vec{P}=|\vec{D}| \cdot|\vec{P}| \cos \delta=u \cdot h+v \cdot k+w \cdot l=0$

Which members of the <111> family of directions lie within the (110) plane?

The [110] direction is perpendicular (i.e., normal) to the (110) plane.
The directions that lie on this plane will give a zero dot product with [110].

$$
[110] \cdot[h k l]=1 \cdot h+1 \cdot k+0 \cdot l
$$

Now substitute in the members of the <111> family and see which give a zero dot product. The <111> family is:
$[111],[\overline{1} 11],[1 \overline{1} 1],[11 \overline{1}],[\overline{1} \overline{1} \overline{1}],[1 \overline{1} \overline{1}],[\overline{1} 1 \overline{1}],[\overline{1} \overline{1} 1]$
Substitute each direction in for $[h k l]$ as shown below:
$[110] \cdot[111]=1 \cdot 1+1 \cdot 1+0 \cdot 1=2$
$[110] \cdot[\overline{1} 11]=-1 \cdot 1+1 \cdot 1+0 \cdot 1=0 \longleftarrow$ This one is on the (110) plane.
etc...
Look for all instances where the dot product = zero.
SOLUTION: [$\overline{1} 11],[1 \overline{1} 1],[1 \overline{1} \overline{1}]$, and [$\overline{1} 1 \overline{1}]$

Atomic packing and the unit cell

- We can visualize crystals structures as stacked planes of atoms.

(a) A square grid of spheres. (b) A second layer, B, nesting in the first, A; repeating this sequence gives $A B A B A B .$. Packing resulting in (c) the BCC crystal structure.

Now that we understand planes - how do crystal structures compare? Close Packed Stacking Sequence in FCC

What is the Close Packed Stacking Sequence in FCC?

- ABCABC... Stacking Sequence
- 2D Projection
- FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

- Coordination \# = 12
- $A P F=0.74$
- c/a $=1.633$
- 2D Projection

6 atoms/unit cell ex: Cd, Mg, Ti, Zn

A comparison of the stacking sequence of close packed planes in HCP \& FCC crystals

A comparison of HCP and FCC stacking sequence of close packed planes

This is similar to Figs. $3.30-3.32$ on pages 78 and 79 of your book.

A comparison of the stacking sequence of close packed planes in HCP \& FCC

How Can We Determine Crystal Structures?

- Measure the inter-planar spacing.
- The inter-planar spacing in a particular direction is the distance between equivalent planes of atoms.
- Function of lattice parameter
- Function of crystal symmetry (i.e., how atoms are arranged)

How do we Measure this Spacing? X-Ray Diffraction

Electromagnetic Spectrum

- Diffraction gratings must have spacing comparable to the wavelength (λ) of diffracted radiation (X-rays).
- In crystals: diffraction gratings are planes of atoms. Spacing is the distance between parallel planes of atoms.
- We can only resolve a spacing that is bigger than λ.

Bragg's Law:

Bragg's Law:
 $n \lambda=2 d \sin \theta$

Where:
$\cdot \theta$ is half the angle between the diffracted beam and the original beam direction
$\bullet \lambda$ is the wavelength of X-ray

- d is the interplanar spacing

Bragg's Law:

25

X-Ray Diffraction Pattern

Why do different crystals diffract different planes?

Reflection Rules of X-Ray Diffraction for the Common Metal Structures		
Crystal structure	Diffraction does not occur when	Diffraction occurs when
Body-centered cubic (bcc)	$h+k+l=$ odd number	$h+k+l=$ even number
Face-centered cubic (fcc)	h, k, l mixed (i.e., both even and odd numbers)	h, k, l unmixed (i.e., are all even numbers or all are odd numbers)
Hexagonal close packed (hcp)	$(h+2 k)=3 n, l$ odd (n is an integer)	All other cases

It's based on atomic arrangement.
Thus, there are rules that define which planes diffract.
Some reflections aren't observed. WHY?

Why is the $\{100\}$ not an allowed reflection in BCC?

Diffraction from (001) planes. Diffracted X-rays are in phase (i.e., they line up perfectly).

Related to equations 3.16 and 3.16 on page 84 .

Diffraction from (002) planes.
X-rays diffracted from (002)
are shifted 180° out of phase (i.e., they do not line up perfectly).

In Class Example

What would be the (hkl) indices for the three lowest diffraction-angle peaks for BCC metal?

In Class Example: SOLUTION

What would be the (hkl) indices for the three lowest diffraction-angle peaks for BCC metal?

First, satisfy reflection criteria for BCC (i.e., $h+k+l=$ even number).
Second, combine d-spacing equation with Bragg's Law:

$$
d_{h k l}=\frac{d}{n}=\frac{a_{0}}{\sqrt{h^{2}+k^{2}+l^{2}}}=\frac{\lambda}{2 \sin \theta}
$$

Re-arrange so that we can determine θ; you will get:

$$
\sin \theta=\frac{\lambda}{2 a_{o}} \sqrt{h^{2}+k^{2}+l^{2}}
$$

Now we plug in $h k l$ values such that the reflection rule is satisfied. NOTE: smallest θ corresponds to smallest combination of $h k l$ values.

Indices	$h+k+l$	$h^{2}+k^{2}+l^{2}$	$B C C$	
100	odd	1	no	
110	even	2	YES \longleftarrow	
111	odd	3	no	
200	even	4	YES \longleftarrow	A great variation on this 210 odd
211	5	question would be:		
even	6	YES \longleftarrow		

Summary

- We can use the dot product as a means to identify angles between planes and directions (this will be important when we get to mechanical behavior!)
- Crystal structure can be determined by measuring inter-planar spacing.
- We use X-ray Diffraction to measure this spacing.
- Inter-planar spacing can be calculated using:

$$
d_{h k l}=\frac{d}{n}=\frac{a_{0}}{\sqrt{h^{2}+k^{2}+l^{2}}}=\frac{\lambda}{2 \sin \theta}
$$

- Bragg's Law:
$n \lambda=2 d \sin \theta$
- Depending on crystal types, certain \{hkl\} planes will diffraction and can be used to identify the crystal structure. We have a set of selection rules to help us identify them. (You do not need to memorize these rules - they would be given to you on an exam, if a question was asked.)

