Name:

Test 3 05/13/2005 Ch. 9-12

Useful number(s): Gravitational Constant: $G=6.6726 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

- 1) (25 points) You are designing a compact disc (CD) player. The diameter of a CD is 120mm and has a mass of 55 grams. (Assume the CD is a solid cylinder I=M $R^2/2$, and the axle on which it rotates is frictionless and massless.)
 - a) What is the moment of inertia of the CD?
 - b) If the CD spins at an angular speed of 30,000 rpm, find the angular momentum of the CD.
 - c) Find the constant angular acceleration needed to stop the CD in one revolution.
 - d) How long does it take to stop the CD?
 - e) How much constant torque is needed to stop the CD?
 - f) Find the average rate of change of the angular momentum $\Delta L/\Delta t$?
 - g) The torque to stop the CD is applied by a frictional brake (μ =0.77) near the hub of the CD at radius of 20mm. What is the magnitude of the constant normal force needed to stop the CD?
 - h) How much work is done stopping the CD?
 - i) How much power is needed?

Name:

Test 3 05/13/2005 Ch. 8-12

- (25 points) Your 75 kg friend is standing 0.5m from the center of a merry-go-round (a large rotating solid cylinder mounted on a frictionless shaft) with moment of inertia of I=895 kg·m² and radius 2.4m initially rotating at 10.8 rpm.
 - a) If your friend moves to the outer edge what will be the new angular velocity? (Assume the person is a point mass.)
 - b) What is the total kinetic energy *before* and *after* the move?
 - c) Next your friend jumps off the merry-go-round in such a way that his tangential velocity with respect to the ground is zero. What is the new angular velocity?
 - d) What is the total kinetic energy at this point?

Name:

Test 3 05/13/2005 Ch. 8-12

- 3) (25 points) The mass of the moon is 7.35 x 10²² kg and radius of 1.74 x 10⁶ m.
 a) What speed is needed to launch a 1kg projectile 1000km above the surface?

 - b) How much energy is needed to launch the 1kg?
 - c) What speed is needed to launch a 100kg projectile 1000km above the surface?
 - d) How much energy is needed to launch the 100kg projectile?
 - e) What speed is needed for the 100kg projectile to just escape the moon's gravity?

Name:_____

Test 3 05/13/2005 Ch. 8-12

- 4) (25 points) A 90 kg man is standing on a rung 8m up a 30 kg, 12 m ladder that makes a 75-degree angle with the ground and is resting on a frictionless vertical wall.
 - a) What is the minimum friction coefficient needed between the ladder and the ground such that the ladder will not slip?
 - b) Using the friction found in part a, how high could the man climb if the ladder were at a 45-degree angle?
 - c) If a second 75kg man stood on the bottom rung (0.3m from the bottom), how high could the 90kg man climb?