
Prof. Mark D Shattuck
Physics 39907 Computational Physics
September 5, 2024

Problem Set 2

Question 1. 4-bit Assembly: Consider a theoretical 4-bit CPU shown in 1 with the instruction set shown
in Table 1. This figure is taken from the Crash Course Computer Science series episodes 7 and 8. These
videos are good resources for this question (although there are a few small differences in the implementation
between Table 1 and the instructions in the videos. CPU4sim.m is a MATLAB tool for simulating the
CPU. CPU4sim allows you to program the CPU using a simple assembly programming language described
in Table 1. In this language the code:

LDA 14
LDB 15
ADD A B
STA 13
HLT

tells the CPU to add the value stored in memory location 14 to the one in location 15 and store the result
in memory location 13. To input this program into CPU4sim you define a variable called prog. Here is
the pre-programmed example from the first few lines of CPU4sim.m:

1 function CPU4sim(prog)
2 %% Clear figure
3 clf;
4
5 %% Program
6 if(¬exist('prog','var') | | isempty(prog))
7
8 [prog{1:16}]=deal(''); % set all 16 locations to empty
9

10 % code
11 prog{1}='LDA 14';
12 prog{2}='LDB 15';
13 prog{3}='ADD A B';
14 prog{4}='STA 13';
15 prog{5}='HLT';
16
17 % data
18 prog{15}=45;
19 prog{16}=13;
20
21 end
22 ...

The variable prog is a cell array so it can store different types of data. If the type of data is a string of
characters like the first element prog{1}='LDA 14'; then the string is converted to an 8-bit instruction
using Table 1. If the entry is a number like prog{16}=13; then the number is stored directly into memory.
The index n in prog{n} determines which memory location. So prog{7}='SUB C D'; would store the
instruction for SUB C D in the 7th memory location. The CPU has 16 memory locations addressed from

1

https://www.youtube.com/watch?v=FZGugFqdr60
https://www.youtube.com/watch?v=zltgXvg6r3k
https://gibbs.ccny.cuny.edu/teaching/current/Files/CPU4sim.m


2

0–15 so the 7th location is ADDR = 6. To program the simulator update the %% Program section with
new instructions and run the code. When the simulator starts all of the registers are random so a RESET
is required before begining the FETCH/DECODE/EXECUTE cycle. In class we worked on writing a
program to find the remainder when the number in ADDR = 14 is divided by the number in ADDR = 15.
The result is stored in ADDR = 13. We had the idea to add at the end to get the final answer. This only
works for signed integers, which we do not have here. Try to think about how to correct this. (Spolier
next!) One solution is to store the intermediate answers. Here is a corrected program:

00:LDA 14
01:LDB 15
02:SUB A B
03:JPN 06
04:STA 13
05:JMP 02
06:HLT;

The line numbers are there to help with the jump commands but are not allowed when programming
CPU4sim. Also the spaces are important in CPU4sim. So SUB A B is not the same as SUBAB. To program
CPU4sim to calculate the remainder use the following:

1 %% Program
2 if(¬exist('prog','var') | | isempty(prog))
3 [prog{1:16}]=deal('');
4
5 % code
6 prog{1}='LDA 14';
7 prog{2}='LDB 15';
8 prog{3}='SUB A B';
9 prog{4}='JPN 06'; %JPN 7th

10 prog{5}='STA 13';
11 prog{6}='JMP 02'; %JMP 3rd
12 prog{7}='HLT';
13
14 % data
15 prog{15}=45;
16 prog{16}=13;
17
18 end

The comments like %JPN 7th are there to make it clear to ”jump if negative” to the 7th memory location
which is ADDR = 06.

(1) Write a program in this assembly language to find the maximum of two numbers stored in ADDR
= 15 and ADDR = 14 and store the result in ADDR = 13. You can test it in CPU4sim. If
CPU4sim gets stuck in a loop, and the reset button will not stop it, then you can press ctrl-c
in the command window to stop it. If the font is too big or small you can use this command
set(findall(gcf,'−property','FontSize'),'FontSize',10) to change it. 8 is the default
size. If you want to change the data in RAM while CPU4sim is running you can delete everything
in the location and type a single number and press return.

(2) Write a program to divide the number in ADDR = 14 by the number in ADDR = 15 and store
the result in ADDR = 12 and the remainder in ADDR = 13.



3

(3) Write a program to multiply two numbers who product is less than or equal to 255. So 17×12 = 204
is okay, but 16 × 16 = 256 is not. Be sure to think about edge cases like 0 × 0 = 0.

4-bit
opcode Name Address or

Registers Example Description

0000 (0) NOP none N O P No operation but
(increment IP)

0001 (1) LDA 4-bit ADDR L D A 1 2 Load contents of ADDR
into register A

0010 (2) LDB 4-bit ADDR L D B 1 4 Load contents of ADDR
into register B

0011 (3) LDC 4-bit ADDR L D C 0 3 Load contents of ADDR
into register C

0100 (4) LDD 4-bit ADDR L D D 0 0 Load contents of ADDR
into register D

0101 (5) STA 4-bit ADDR S T A 1 2 Store contents of
register A into ADDR

0110 (6) STB 4-bit ADDR S T B 0 7 Store contents of
register B into ADDR

0111 (7) STC 4-bit ADDR S T C 0 1 Store contents of
register C into ADDR

1000 (8) STD 4-bit ADDR S T D 1 0 Store contents of
register D into ADDR

1001 (9) JMP 4-bit ADDR J M P 1 5 Jump to 4-bit memory
address ADDR

1010 (10) JPO 4-bit ADDR J P O 1 0 Jump to ADDR if O-flag
(Overflow) is set

1011 (11) JPN 4-bit ADDR J P N 1 2 Jump to ADDR if N-flag
(Negative) is set

1100 (12) JPZ 4-bit ADDR J P Z 0 5 Jump to ADDR if Z-flag
(Zero) is set

1101 (13) ADD R1 R2 A D D A C R1=R1+R2 e.g., store
A+C in A (Flags:OZ)

1110 (14) SUB R1 R2 S U B C B R1=R1-R2 e.g., store
B-C in B (Flags:NZ)

1111 (15) HLT none H L T Halt operation and
(decrement IP)

Table 1. Instruction set for a theoretical 4-bit CPU. ADDR represents one of the 16 4-bit memory
addresses. For example, the full 8-bit instruction to store register A in memory location 12 (LDA 12)
is 0b01101100. Rn where n is 1 or 2 represent 2-bit addresses of registers A=0b00, B=0b01,
C=0b10, D=0b11. For example the full 8-bit code for (ADD D A) is 0b11011100.



4

Figure 1. Layout for a theoretical 4-bit CPU.

Question 2. Introduction to MATLAB: Go to Introduction to MATLAB and download the MATLAB
Primer. Go through the steps and write up 3 out of the 7 problems at the end. If you are already a
MATLAB expert you could do parts or all of the Advanced (Particle Tracking) exercises here.

https://gibbs.ccny.cuny.edu/teaching/current/Files/intro/Intro.html
https://gibbs.ccny.cuny.edu/teaching/current/Files/intro/MATLAB/primer.pdf
https://gibbs.ccny.cuny.edu/teaching/current/Files/intro/MATLAB/primer.pdf
https://gibbs.ccny.cuny.edu/teaching/current/Files/intro/Intro.html#2

	1. Question
	2. Question

