
J. Chem. Phys. 33, 1439 (1960); https://doi.org/10.1063/1.1731425 33, 1439

© 1960 American Institute of Physics.

Studies in Molecular Dynamics. II.
Behavior of a Small Number of Elastic
Spheres
Cite as: J. Chem. Phys. 33, 1439 (1960); https://doi.org/10.1063/1.1731425
Submitted: 23 May 1960 . Published Online: 05 August 2004

B. J. Alder, and T. E. Wainwright

ARTICLES YOU MAY BE INTERESTED IN

Studies in Molecular Dynamics. I. General Method
The Journal of Chemical Physics 31, 459 (1959); https://doi.org/10.1063/1.1730376

Phase Transition for a Hard Sphere System
The Journal of Chemical Physics 27, 1208 (1957); https://doi.org/10.1063/1.1743957

Studies in Molecular Dynamics. V. High-Density Equation of State and Entropy for Hard
Disks and Spheres
The Journal of Chemical Physics 49, 3688 (1968); https://doi.org/10.1063/1.1670653

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519848081&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c13348bd5a0f79fb8ad524aee0a7dc1c899b85bf&location=
https://doi.org/10.1063/1.1731425
https://doi.org/10.1063/1.1731425
https://aip.scitation.org/author/Alder%2C+B+J
https://aip.scitation.org/author/Wainwright%2C+T+E
https://doi.org/10.1063/1.1731425
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1731425
https://aip.scitation.org/doi/10.1063/1.1730376
https://doi.org/10.1063/1.1730376
https://aip.scitation.org/doi/10.1063/1.1743957
https://doi.org/10.1063/1.1743957
https://aip.scitation.org/doi/10.1063/1.1670653
https://aip.scitation.org/doi/10.1063/1.1670653
https://doi.org/10.1063/1.1670653


THE JOURNAL OF CHEMICAL PHYSICS VOLUME 33, NUMBER 5 NOVEMBER, 1960 

Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres 

B. J. ALDER AND T. E. WAINWRIGHT 

Lawrence Radiation Laboratory, University of California, Livermore, California 

(Received May 23, 1960) 

~he equation of state and the collision rate for systems ranging in size from four to 500 particles are de
~r~bed .. The.dependence of t~e resu~ts on the number of particles is qualitatively discussed and in this way 
lllSl~ht IS galll~d as to what IS reqUlred of more accurate analytical theories. By comparing the results to 
vanous analytical theories now available their region of validity is established. The number of particles 
necessary at various densities to obtain a quantitative description of the equilibrium properties is delineated. 
Whether a first-order phase transition exists for hard spheres remains open until larger systems are investi
gated. 

INTRODUCTION perturbed by the boundary. In two-dimensional systems 

I N the previous paperl a program for digital computers the same two-state behavior was found as in three
has been described which reproduces the detailed dimensional systems and a study is now under way to 

motions of a system of interacting classical particles. In determine whether a 1000- or a 2000-particle system 
this paper some of the results of such a calculation as does have the two phases' coexisting. 
applied to a relatively small number of hard sphere Before it can be said that a large enough number of 
molecules is presented. The aim of such a study was to particles have been used to adequately represent an 
learn how many particles are required to adequately infinite system, the boundary conditions used should 
represent the equilibrium behavior of a real system. not influence the results. This has by no means been 

In order to answer this question it is necessary to achieved with a 500-particle system. Periodic boundary 
study the dependence of the results on the number of conditions have been used throughout for the systems 
particles. Thus, systems as small as four particles and presented in this report in the belief that they give the 
as large as 500 particles are reported on. The four- most realistic results. They are certainly natural 
particle system was studied in the hope that it would boundary conditions in condensed or solid systems 
reproduce the two-state behavior at a density near 1.5 where the structure is periodic. They also can be shown 
times close-packing noted previously2-6 for larger to cause the least error in the equilibrium properties at 
systems. If this were the case then it would have been low density. Other boundary conditions have been 
worthwhile to attempt an analytical solution for the studied also, and will be reported on subsequently. 
four-particle system, and determine from it what the Although qualitatively the results are the same, they 
proper average behavior between the two states is at differ quantitatively and they will continue to do so 
that density. Since a larger number of particles than until the number of particles on the surface is a small 
four w~re required to bring about a two-state behavior, fraction of the total number of particles. In the more 
analytIcal treatment is out of the question; even dealing favorable situation of two-dimensional systems this 
with three independent particles would have been a will not occur until systems containing more than 
hard task (three particles are placed relative to the 10 000 particles can be handled. This is, however, 
fourth). This also means that any analytic treatment quite feasible with the latest generation of computers. 
to even qualitatively describe the behavior near this With a system so large that boundary conditions 
density would be extremely difficult. do not significantly influence the results, it would be 

The larger systems were studied in the hope that the possible to represent an arbitrary number of particles 
two states would eventually coexist. Only then can one at solid densities provided the system is run long 
be sure that hard spheres have a first-order phase enough to rearrange itself to the state of lowest free 
transition between a fluid and a solid state. The fact energy from some arbitrary initial configuration. In 
that this was not achieved with systems as large as 500 the fluid region the number of particles does not affect 
particles is not surprising. The best hope of getting the the results as long as there are enough particles to 
two phases to coexist for a small number of particles is establish the proper local order. For solids, however, 
in two-dimensional systems, since fewer particles are long-range order can only be obtained for a small num-

ber of particles if the order extends across the boundaries 
1 B. J. Alder and T. E. Wainwright, J. Chern. Phys. 31, 459 

(1959). of the system. In the case of periodic boundary condi-
2 B. J. Alder and T. E. Wainwright, J. Chern. Phys. 2'7, 1208 tions this means that the particles on one side of the 

(1957) . 
3 T. E. Wainwright and B. J. Alder, Nuovo cimento Suppl. 9, cell have to be perfectly arranged relative to the other 

Ser. 10, 116 (1958). side of the cell. For large systems, however, fairly 
4 W. W. Wood and J. D. Jacobson, J. Chern. Phys. 27, 1207 long-range order can be established within a given cell 

(1957) . 
6 W. W. Wood, R. R. Parker and J. D. Jacobson Nuovo cimento and even if the boundaries do not match, this does not 

Suppl. 9, Ser. 10, 133 (1958). ' seriously influence the results. Thus a crystal can form 
1439 
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TABLE I. Equation of state and the collision rate for four particles. 

vivo (pvINkT)-1 r/ro R" Cb 

1.250 13.35 5.03 0.89 2 
1.400 8.88 3.73 0.89 2 
1.500 7.41 3.36 0.89 7 
1.525 7.12 3.27 0.89 5 
1.550 6.86 3.23 0.90 3 
1.600 6.40 3.08 0.89 5 
1.700 5.76 2.93 0.88 2 
1.800 5.28 2.88 0.90 2 
1.850 5.09 2.87 0.91 5 
1.900 4.99 2.83 0.88 5 
2.000 4.61 2.80 0.90 2 
2.100 4.33 2.73 0.89 5 
2.200 4.20 2.74 0.88 2 
2.300 3.94 2.74 0.90 5 
2.400 4.00 2.87 0.88 5 
2.500 3.68 2.82 0.91 2 
3.000 3.02 2.72 0.89 2 

• R is the ratio of the experimental to theoretical collision rate, if the latter is 
calculated from the Enskog theory with the machine determined equation of 
state. 

b C is the number of 1000 collisions the problem has been run. 

in any direction relative to the boundary, which is not 
the case in the smaller systems. However, there are 
still serious problems in large systems with respect to 
the calculating time involved to transform an arbitrary 
initial state to the final equilibrium state. Just as in real 
systems, glasses can be stable for very long times, so 
an arbitrary initial configuration can be metastable 
for as long a time as one cares to calculate. 

For small systems it is thus necessary to study that 
precise number of particles which fit exactly into the 
cell in order to represent a solid as realistically as 
possible. This number of particles also has to be placed 
into the chosen lattice positions; otherwise it has been 
found that the system will not convert to the state of 
lowest free energy in reasonable calculating time. 

TABLE II. Equation of state and the collision rate for eight 
particles. 

vivo' (pvINkT)-1 r/ro Rb Co 

1.5OO(s) 7.56 3.59 0.94 0-5.0 
1.525(s) 7.37 3.61 0.95 0-5.0 
1.550(s) 7.07 3.50 0.95 0-20.0 
1.570(s) 6.88 3.46 0.95 0-7.5 
1.580(s) 6.82 3.46 0.95 0-6.6 
1.580 (f) 9.90 4.14 0.79 6.6--10 .0 
1.59O(s) 6.78 3.41 0.94 0-5.0 
1.600(s) 6.67 3.42 0.95 0-1.4 
1.600(£) 9.72 4.14 0.79 1.4-5.0 
1.61O(s) 6.56 3.36 0.95 0-10.0 
1.620(s) 6.50 3.40 0.96 0-5.0 
1.650(s) 6.34 3.37 0.96 0-10.0 
1. 700(s) 5.99 3.28 0.96 0-7.6 
1.800(s) 5.55 3.17 0.94 0-10.0 
2.oo0(s) 4.71 3.09 0.97 0-1.3 
2.oo0(f) 5.16 3.34 0.96 1.3-5 

• The brackets symbolize the solid (s) and the fluid (f) brancb, respectively. 

Although only the two close-packed lattices for hard 
spheres were studied and they both, as expected, gave 
the same results, it is believed that they yield the state 
of lowest free energy at least at the highest densities. 
If metastability is a problem, the most efficient way to 
avoid long calculations is to study various initial states 
and select the one of lowest free energy at various 
densities. This has not as yet been done extensively. 
Thus a body-centered crystal should be examined III 

the two-state region. 
It is, however, possible even in small systems to 

slightly change the number of particles studied and 
still get a solid with long-range order. One example 
of this is given when a perfect solid with one imperfec
tion, namely with one missing particle, is described. Of 
course, not too many such holes could be introduced 
in small systems or they would lose their long-range 
character . 

TABLE III. Equation of state and the collision rate for 16 
particles. 

vivo" (pvINkT) -1 r/ro 

1.500 7.71 3.77 0.97 0-5.0 
1.52S(s) 7.49 3.72 0.970-8.6,9.0-10.0 
1.S2S(f)b 8.6--9.0 
1.550 7.31 3.74 0.97 0-10.0 
1.600(s) 6.98 3.67 0.97 0-1.9,2.0-10.0 
1.600 (f) b 1.9-2.0 
1.650(s) 6.63 3.57 0.97 2.5-6.0,8.6--10.0 
1.650(f) 9.0 4.84 0.97 0-2.5,6.0-8.6 

• The symbols have been defined in the previous tables. 
b For the cases ./'0=1.525 and 1.600, the fluid branch existed for too few 

collisions to determine the pressure adequately. 

RESULTS 

Since the machine is made to calculate the actual 
motion of each particle, this program has been prin
cipally designed to study the transport properties of 
systems. Some preliminary results6 of these have been 
previously given. In this report, however, attention is 
focused on the equilibrium properties because these 
are much better understood and hence confidence in 
the method can be established, especially since direct 
comparison with the Monte Carlo results4,5 can be 
made. 

The thermodynamic properties of a hard sphere 
system are completely described by the pressure since 
the internal energy is that of a perfect gas. The pressure 
is calculated by a direct application of the virial theorem 
which states that 

(pv/NkT)-1=(1/Nu2) (d'S./dt), (1) 

where u2 is the mean square velocity, 

$= :E bib 
co llisions 

b As defined in Table I. 6 B. J. Alder and T. E. Wainwright, Transport Processes in 
o C stands for the range in units of 1000 collisions the problem has run in each Statistical Mechanics, I. Prigogine (Interscience Publishers, New 

branch. York, 1958), p. 97. 
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TABLE IV. Equation of state and the collision rate for 32 particles. 

vivos (p'lJINkT)-1 rmsdb 

1.03139 97.2 0.21 
1.25000 13.62 
1.40000 9.33 0.16 
1.50000 8.12 
1.52500(5) 7.92 

1.52500(f) 10.51 

1.53000(5) 7.88 
1.53000(£) 10.47 
1.53125(s) 7.90 
1.53125(f) 10.54 
1. 53250(s) 7.84 
1.5325O(f) 10.45 
1.53500(5) 7.78 
1.53500(f) 10.30 
1.54000(5) 7.72 
1.54000(£) 10.23 
1.55OOO(s) 7.63 0.77 

1.55OOO(f) 10.02 

1.60000(s) 7.57 
1.60000(f) 9.06 
1.65000 8.41 0.82 
1.70000 7.83 0.37 
1.75000 7.13 0.47 
1.80000 6.59 0.88 
2.00000 4.89 0.50 
3.00000 2.09 
9.00000 0.409 

10.00000 0.343 
14.14214 0.249 

a The symbols bave been defined in tbe previous tables. 
b rmsd stands for the root-mean-square deviation in (pv/NkT)-1. 

and b;j=r.;ru;j has been defined previously! as the 
scalar product of the relative positions and relative 
velocities of particles i and j which are involved in a 
collision. The pressure is graphically determined from 
the slope of a plot :a: vs t, and can for a sufficiently long 
run be obtained within an accuracy of 1% in pv/NkT. 

The only property involving the time which shall be 
discussed here is the collision rate r. According to the 
theory of Enskog,7 r is intimately related to the equa
tion of state, 

r/ro=(pv/NkT-1)/(B/v), (2) 

where B is the second virial coefficient and ro is the 
collision rate at infinite dilution 

(3) 

N is the number of particles per unit volume. Since 
finite systems are dealt with, it is strictly speaking 
necessary to use the value of B for finite systems also. 
Hence the expression given in Sec. E was used for B. 
(J is the diameter of the particles. The collision rate and 
the equation of state are tabulated at various compres
sions expressed in terms of vivo, where Vo is the volume 
of the system at close packing. 

7 D. Enskog, Kgl. Sven5ka Ventenskapsakad. Hand!. 64. No. 
4 (1922). 

r/ro R" Cs 

34.1 1.01 0-2.0 
5.72 1.00 0-10.0 
4.37 0.99 0-11.0 
4.06 0.99 Q-42.0 
4.04 0.99 0-29.0,30.0-93.0, .. 

5.42 1.00 
106.0-107.0,204.0-205.0 
29.0-30.0,93.0-106.0, 

107.0-204.0,205.0-263.0 
4.03 0.99 0-76.0 
5.41 1.00 16.0-200.0 
4.04 0.99 0-4.2 
5.41 0.99 4.2-28.0 
4.00 0.99 0-9.0 
5.35 0.99 9.0-52.0 
4.01 .1.00 0-2.5 
5.28 0.99 2.5-52.0 
4.01 1.00 0-0.4 
5.26 0.99 0.4-47.0 
3.95 0.99 0-5.0,6.5-25.0, 

179.0-180.0 
5.19 0.99 5.0-6.5,25.0-179.0, 

180.0-220.0 
4.02 0.98 0-5.0 
4.87 1.00 5.0-53.0 
4.63 0.99 0-50.0 
4.40 0.98 0-15.0 
4.19 1.00 0-15.0 
3.99 1.00 0-15.0 
3.28 1.00 0-5.0 
2.07 0.98 0-39.0 
1.23 0.99 0-9.0 
1.17 1.01 0-1.5 
1.05 0.97 0-3.0 

(A) Intennediate Densities 

The results are presented in Tables I through XI 
and in graphs 1 through 4. Figure 1 shows the results 
for various sized systems in the intermediate density 
region where the two-state behavior is found. As the 

TABLE V. Equation of state and the collision rate for 96 
particles. 

vivo" (plJINkT)-l r ro Ra C· 

1.0306 99.55 34.4 1.00 0-2.0 
1.1000 31.54 11.90 1.02 0-2.9 
1.1600 20.27 7.85 0.99 0-2.0 
1.2500 13.66 5.75 1.00 0-3.0 
1.3448 10.53 4.83 1.01 0-2.0 
1.4200 9.22 4.36 0.99 0-2.0 
1.5000 8.41 4.25 1.00 0-7.0 
1.6000(5) 7.77 4.18 1.00 0-2.6 
1.6000(£) 8.96 4.88 1.01 2.6-10.0 
1. 7000 (5)b 0-1.0 
1.7000(£) 7.54 4.25 0.98 1.0-6.5 
1.8ooo(s) 6.14 3.75 1.01 0-3.8 
1.8000(£) 6.80 4.10 0.99 3.8-6.0 
1.9000 5.44 3.50 1.00 0-4.0 
2.0000 4.72 3.22 1.01 0-3.6 
2.7220 2.63 2.31 0.96 0-3.0 

14.1422 0.240 1.14 0.99 0-3.0 

8 The symbols bave been defined in previous tables. 
b The solid branch is too short to determine the pressure with any accuracy. 
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TABLE VI. Equation of state and the collision rate for 108 
particles. 

vivo' (pvINkT) -1 r/ro R' C' 

1.0306 99.02 34.3 1.00 0-5.0 
1.2500 13.68 5.70 1.00 0-5.5 
1.3448 10.65 4.89 1.02 0-4.6 
1.4200 9.34 4.48 1.01 0-2.6 
1.5000 8.36 4.24 1.01 0-13.9 
1.55OO(s) 8.20 4.31 1.01 0-3.0 
1.5500(f) 9.84 5.09 1.00 3.7-29.7 
1.6ooo(s)b 8.13 4.36 1.00 0-1.9 
1.6ooo(f) 8.87 4.67 0.98 2.2-34.0 
1.6500(S)b 7.73 4.01 0-0.7 
1.6500 (f) 8.30 4.58 1.00 0.7-4.2 
1.7000 7.61 4.35 1.00 0-33.0 
1. 7678 6.83 3.90 0.97 0-5.4 

• The symbols have been defined in previous tables. 
b The accuracy of the results a(these densities is poor due I to the short 

existence of these branches. 

TABLE VII. Equation 'of state and 'the collision)ate fo(256 
particles. 

vivo' (pvINkT) -1 r/ro R' C· 

1.5000 8.34 4.12 0.98 0-3.0 
1.6oo0(s) 7.52 3.98 0.99 0-2.5 
1.60oo(f) 8.96 4.87 1.01 4.9-9.5 
1. 7678(s) 6.37 3.87 1.02 0-3.7 
1.7678(f) 6.88 4.09 1.00 5.0-9.2 
2.0000 4.81 3.21 0.99 0-3.0 

• The symbols have been defined in previous tables. 

TABLE VIII. Equation of state and the collision rate for 500 
particles. 

vivo' (pvINkT)-l r/ro R' C· 

1.6OO0(s) 7.68 4.07 0.98 0--6.2 
1.6oo0(f) 8.91 4.82 1.00 11.0-22.5 
1.6500 7.06 3.84 0.98 0-3.0 
1.7000 6.67 3.79 0.99 0-3.2 
1. 7678 6.36 3.73 0.99 0-2.8 

• The symbols have been defined in previous tables. 

TABLE IX. Equation of state and the collision rate for 32 
particles in the compressed-fluid region. 

vivo (pvINkT)-l r/ro 

1.1546' 
1.1987 
1.2496 
1.2982 
1.3443 
1.4017 
1.4948 
1.5981 

700 
64.1 
30.8 
22.5 
18.3 
14.7 
11 ,2 
9.20 

300 
26.2 
13.1 
9.37 
8.10 
6.93 
5.55 
4.98 

1.10 
1.01 
1.01 
0.95 
0.98 
1.00 
0.99 
1.00 

0-1.4 
0-1.1 
0-1.4 
0-1.2 
0-1.4 
0-1.4 
0-1.3 
0-1.2 

vlvo-0.1506 

1.0040 
1.0481 
1.0990 
1.1476 
1.1937 
1.2511 
1.3442 
1.4475 

• The system was carried to a density of "1 .. =1.1546, but (froINkTJ-l was 
so high that with the short run available the pressure could not be determined 
accurately. 

b The symbols have been defined in previous tables. 

TABLE X. Equation of state for 100 particles, initially always 
in a random configuration. 

vivo (pvINkT)-l 

1.2279 21.5 
1.3448 13.3 
1.7678 6.70 
2.0000 4.81 
2.722 2.47 

14.142 0.237 
30.43 0.104 
86.07 0.0359 

C· 

0-4.0 
0-3.5 
0-4.3 
0-5.6 
0-1.9 
0-2.8 
0-3.2 
0-1.9 

(pvb INkT)-1 

0.240 
0.104 
0.0352 

• The number of collisions in units of 1000 collisions the problem has been run. 
b From the five-term virial expansion. 

TABLE XI. Equation of state for 31 particles, initially in a 
face-centered lattice with one particle left out. 

1.2903 
1.4464 
1.5484(s) 
1.5484 (f) 

vivo' 

1.2500 
1.4012 
1.5000 
1.5000 

pvolNkT 

11.4 
7.28 
5.88 
7.23 

(pvINkT)-l 

13.75 
9.53 
8.11 

10.19 

• The value of vi .. if there were 32 particles present. 

c 

0-2.0 
0-7.2 
0-1.0 

3.0-7.0 

9~--.---~--.-------r-------r-----~ 

FIG. 1. Equation of state in the transition region. Both the 
fluid and solid branches are plotted for those numbers of particles 
where each was found. The curves are labeled by the number of 
particles. The heavy lines refer to systems which contain 96 or 
more particles. 
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cathode ray tube pictures displayed in paper 11 clearly 
showed, the lower branch of the system is solidlike and 
the upper branch is fluidlike. It was found that the 
system stayed in the lower branch for quite a long 
calculating time, then suddenly jumped to the upper 
branch and stayed there for quite a long calculating 
time before jumping back to the solid branch again. 
The transition between the two branches occurs so 
infrequently that it was not possible to get enough 
statistics to establish the average time the system 
spends in each branch. Thus, each branch is plotted 
separately. Even if an average pressure could be 
established in this density region its significance would 
not be clear. 

Thus, in these small systems it is not possible to have 
solid and fluid together in equilibrium, but the whole 
system is in either one phase or the other. The accessible 
region of phase space might be considered as consisting 
of two pockets, one solid, the other liquid, connected 
by a narrow passage. The narrow passage represents 
the relatively improbable cooperative motion among 
the particles necessary to let a particles escape out of 
its cell and turn a solid into a liquid. The reverse 
process also is improbable since a cooperative motion 
among a set of particles is required to form a small 
ordered region. For these small systems such processes 
are made more unlikely, because the solid has to crystal
lize in a particular orientation. For larger systems this 
is not necessary so that presumably the passage be
tween the two pockets enlarges for this reason. On the 
other hand, the crystallites could be bigger so that 
more particles might be involved in the cooperative 
motion, causing a narrowing of the passage. If there is 
to be a first-order phase change, crystals must exist in 
equilibrium with the fluid; that means that the passage 
must not be choked off in larger systems. The passage 
can, however, be still quite narrow so that it might take 
a large amount of calculating time to establish equilib
rium, but the system is large enough so that part of the 
system is in the solid phase and part in the liquid one. 

The question of what actually happens is not settled 
yet, but can probably be settled by the study of large 
two dimensional systems. From the results presented in 

TABLE XII. Occurrence of the first transition from the solid to 
the fluid state at a given density (v/vo= 1.60) for various numbers 
of particles and the duration of the transition. 

N 

8 
16 
32 
96 

108 
256 
500 

collisions/particle 

350 
240 
310 

54 
35 
20 
25 

duration" 
(collisions/particle) 

6 
19 
19 

a For the small systems the duration of the transition is too short to be ac
curately determined, but they are of the order of one collision per particle. 

TABLE XIII. Occurrence of the first major transition from the 
solid to the fluid state for a given number of particles (32) as a 
function of density. 

vivo 

1.52500 
1.53000 
1.53125 
1.53250 
1.53500 
1.54000 
1.55000 
1.60000 

collisions/particle 

5800 
4700 

260 
560 
150 

25 
310 
310 

Table XII it appears that the passage widens as the 
number of particles increase. Table XII shows that as 
the number of particles increases it takes fewer and 
fewer collisions per particle to go from an initial solid 
state to the fluid state at a given density. These results 
are for a single run for all the different systems and 
hence large statistical fluctuations can be expected. 
Nevertheless the trend is clearly established. Table XII 
also shows the number of collisions necessary to go 
from the lower branch to the upper branch as judged by 
the interval from the point at which the pressure first 
increases to the point at which the pressure steadies 
down to the upper branch value. The fact that the 
transition region between these two states persists 
longer as the number of particles increases also in
dicates that the passage widens, because the systems 
spend more time in the partially melted state. Without 
referring to the picture just presented one can say 
that the partially melted region becomes more stable 
for larger systems, so that for large enough systems 
that state might become stable for very long times and a 
first-order phase transition would then exist. 

Returning to the picture of phase space, as the dens
ity changes the pockets change relatively in size. Thus, 
at higher densities the solid pocket grows at the expense 
of the liquid pocket. This means that the system spends 
more time in the solid pocket and attempts fewer 
entries into the passage to the liquid side. At the same 
time, however, the passage also narrows, since a more 
improbable fluctuation is involved in turning a denser 
solid at least partially into a fluid. This picture is 
confirmed by the results in Table XIII, where the 
density dependence of the transition is studied for a set 
number of particles. At higher densities the transition 
from the solid to the fluid state requires many more 
collisions, until finally at vivo of 1.50 it was impossible 
to cause the transition to take place. Since the passage 
is wider for larger systems, it can be expected that at 
higher densities than for smaller systems it will still be 
possible to reach the fluid state. Eventually, however, 
the passage should be choked off at high but finite 
densities, but, as will be seen, the liquid pocket can still 
persist as a metastable state. In any case these con
siderations are in accordance with the sensitive de
pendence of the results on density. 
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Figure 1 also demonstrates the systematic variation 
of the results with the number of particles. It is found 
that the larger systems have a higher pressure in the 
solid phase than the smaller systems, while in the fluid 
phase just the reverse is true. However, for systems 
greater than about 100 particles the pressure is no 
longer different within the accuracy of the results. 
These systems form the heavy curve drawn in Fig. 1. 
For 100 or more particles all the second neighbors of a 
given particle are in the same cell, while for 32 particles 
some of these second neighbors are in the adjacent cell. 
Because of the periodic boundary condition this means 
that these second neighbors are not all independent 
of each other in their motion, that is, some of them have 
identical histories. For systems with less than 32 par
ticles even the nearest neighbors are not independent. 
This apparently causes the fairly large change in the 
results for very small systems. Once the first neighbors 
are correctly treated the results are close to the behavior 
of larger systems. Whether third neighbors are treated 
independently or not is apparently of not much quanti
tative significance except as far as the phase transition 
is concerned. There many particles are needed to 
represent a crystallite in equilibrium with a fluid. 

The two-state behavior was found over a region of 
density of 1.5 <v/vo< 1.7. Above vivo of about 1.7 
the solid system which was initially set up almost 
immediately lost the ordered configuration, and hence 
did not stay on the lower pressure branch for an ob
servable time. Systems with v/vo< 1.525 remained in 
the lower branch and in the original configuration for 
very long runs. 

The results of the free volume theory8 are given in 
Fig. 1 by the curve labeled 2. From the point of view of 
periodic boundary conditions one particle surrounded 
by its neighbors at fixed positions is generated by a two
particle system, the second particle representing all the 
neighbors. A one-particle-per-cell system with periodic 
boundary conditions leads to no collisions and hence a 
perfect gas equation of state. This free-volume theory 
uses the smeared-out neighbor approximation, that is, 
the central particle is confined to an equivalent sphere 
rather than the exact, but geometrically complex, 
region that is accessible in between the neighboring 
spheres when they are located on lattice positions. If 
the latter free volume is calculated9 the pressure is 
raised but not nearly enough to bring it into agreement 
with the larger system results. 

The dotted curve labeled 3 in Fig. 1 refers similarly to 
a free-volume theory, but one in which two particles are 
confined to a cell determined by their neighbors. lO The 
curve is dotted because it is not the accurate result of 
such a calculation. Because of the complexity of the 

8 J. E. Lennard-Jones and A. F. Devonshire, Proe. Roy. Soe. 
(London) AI63, 53 (1937). 

9 R. J. Buehler, R. H. Wentorf, J. O. Hirsehfelder, and C. F. 
Curtiss, J. Chern. Phys.19, 61 (1951). 

10 J. de Boer, Physica 20, 655 (1954); 21, 137 (1955). 

calculation some mathematical approximations had to 
be used in order to apply the theory to this region of 
density. Again the results are in the right direction from 
the two-particle theory but not large enough. 

A characteristic of the free-volume theory and of 
very small periodic systems is that density fluctuations 
are suppressed. This could make the pressure too low 
as compared to an infinite system. Thus, if pep) is the 
pressure as a function of density, according to the free 
volume theory, then the effect of fluctuations can be 
calculated as a perturbation. Let Po be the average 
density and let J(p) be the distribution of densities in 
the region of an atom. That is, J(p) is related to the 
distribution of nearest-neighbor configurations or 
cell sizes which would be found in an infinite system. 
Then, 

p= t' P(p)J(p)dp. 
o 

Expanding PCp) in a Taylor series about po yields 

and since 

and 

+ higher order terms. 

At very high densities where density fluctuations are 
inhibited, J(p) is a delta function centered at Po so the 
integral in the above equation vanishes. 

Thus, as can be seen from Fig. 1 and particularly from 
Fig. 3, at densities near close-packing, the free-volume 
theory calculates the pressure very accurately. At densi
ties lower than that of close-packing, the integral is 
positive so that P is larger than P(Po) since d2P/dp2 

is positive. The amount of fluctuation in density, that 
is the width of the functionJ(p), grows with increasing 
system size so that the larger systems in this density 
range should show higher pressures. 

The free-volume theory is a model applicable in the 
solid state in as much as the neighboring particles are 
strictly confined to a lattice. It is, therefore, not sur
prising that the two-state behavior is not found for 
this theory. The larger systems investigated on the 
calculating machine are akin to the cell theory, as 
previously implied, when periodic boundary condi-
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tions are used. For example, the same results for the 
equation of state are obtained when two particles are 
studied on a body-centered cubic lattice with periodic 
boundary conditions and when the free-volume theory 
for that situation is worked out. Thus larger systems 
are merely cell theories with more particles per cell. 
The question is, then, how many particles per cell are 
necessary to get away from an ordered state and create 
the opportunity to produce a disordered state. As Fig. 1 
shows, the three-particle analytical theory did not show 
a disordered state; neither does the four-particle system 
worked out on the computer. 

The four-particle system is the smallest cubic unit 
of a face-centered lattice. Since the system is so small, 
it was necessary in the calculation to anticipate colli
sions with a particle and also with its periodic continua
tions in neighboring boxes. This causes such small 
systems to be not nearly so fast to run on the computers 
as one might at first think. Nevertheless, quite long 
runs were made without finding a transition to a fluid
like state. However, a comparison of the positions of 
particles initially and after some collisions had taken 
place, showed that particles had switched positions for 
values of vivo?:. 1.80 while they were still in their original 
order for vlvo~1.7- at the end of the run. This means 
that although particles are free to interchange, it is not 
possible to create any disorder in the system, because 
after the interchange the particles are again in a regular 
arrangement near lattice positions. The value of vivo 
at which interchange can first take place is a reasonable 
one. Interchange can first occur roughly when two 
particles can slip past each other along the diagonal of 
the unit cube after a third one is placed on the corner. 
This means that the diagonal length (YJ) has to be 
equal to 3<1 or vlvo= 1.837. By cooperative motion of 
three particles a rotation of the three (equivalent to an 
interchange) can occur at slightly higher densities in 
agreement with the facts. 

For systems containing eight or more particles the 
two-state behavior was obtained, though with eight
particle systems the fluid state was reached in only a 
few cases, and then after rather long runs. The eight
particle system consisted of two unit cubes containing 
four particles each placed next to each other. The result
ing periodic space consisted of rectangular parallelo
pipeds. Similarly for the 16-particle system two of the 
eight-particle cells were placed next to each other. 
The 32-particle system again has a cubic cell when two 
of these 16-particle cells are combined. Figure 1 shows 
that the difference in the pressure for the two states is 
larger for the smaller systems. An explanation of why 
the fluid pressure is higher for the smaller system might 
be that when these systems get into the disordered state 
it is impos~ible to establish the proper local order. 
Becaus.e for the eight- and 16-particle systems the 
nearest neighbors are not independent, it is not possible 
to relax the position of one neighbor if the other neigh
bor is in a favorable position. In other words, there is 
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FIG. 2. Equation of state in the low-density region. The symbols 
labeling the curve mean: sup = superposition theory, vir = five
term virial expansion, fv=free-volume theory, 4=four-particle 
results, and the dots refer to the machine calculations for systems 
with 32 or more particles. 

order among the correlated neighbors but the system 
overall is more jammed up than in larger systems be
cause less flexibility is available. This jamming causes a 
higher pressure. l1 The very same reason caused a lower 
pressure in the solid branch. Less flexibility in the solid 
phase meant that the correlated neighbors were always 
the same distance apart so that if a particle collides 
with one member of a correlated set it will certainly 
be far away from some of the others. This effect was 
described previously as an inhibition of fluctuation in 
cell size. 

(B) Low Densities 

Figure 2 compares the molecular dynamics results 
with various analytical theories in the dense-gas 
region. The dots refer to the results for larger systems. 
The free-volume theory (labeled fv) is just not applic
able in this region and results in pressures which are 
too high. Because the curves for small systems cross the 
curve for larger systems at different densities it mis
leadingly appears that the four-particle theory gives a 
worse result than the two-particle theory at low densi
ties. The four-particle theory is probably in better 

11 See the next paragraph which explains the same phenomena 
in an equivalent way, namely, the inability of the system to form 
clusters. 
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TABLE XIV. Excess entropy of a fluid of rigid spheres, 
SE/Nk, as a function of density. 

V/VO 

8.38 
4.74 
3.48 
2.83 
2.42 
2.15 
1.94 
1. 78 
1.64 
1.53 

Sup 

0.03 
0.11 
0.23 
0.37 
0.56 
0.76 
1.00 
1.23 
1.49 
1.77 

Present 

0.03 
0.10 
0.21 
0.36 
0.55 
0.77 
1.04 
1.35 
1.76 
2.21 

fv 

1.36 
1.81 
2.16 
2.45 
2.73 
2.98 
3.24 
3.49 
3.77 
4.05 

agreement with the large-system results than the 
"smeared" free-volume theory at still lower densities, 
but may not be any better than the "average" free 
volume theory9 which also gives too high a pressure in 
this region (vivo> 2.S). The reason that the pressure is 
now higher than the more accurate results while in the 
solid region it was lower, can be restated in the follow
ing manner. In the :fluid region hard spheres like to 
cluster so as to have as large as possible an attractive 
potential of average force. When two spheres are close 
together this effective attractive potential arises from 
the geometric consideration that there are more colli
sions forcing the two spheres together than forcing them 
apart. The cell theory prevents this clustering by con
fining the neighboring particles to their lattice positions; 
the effective attractive potential is hence less and the 
pressure higher. 

The superposition theory of Kirkwood12 treats the 
distribution of particles in a much more satisfactory 
manner, as can be seen by the better results in Fig. 2. 
(The curve labeled sup) In fact, it was the prediction 
of the superposition theory13 that hard spheres have a 
solid-:fluid-like phase transition at a vivo of about 1.S 
that lead originally to this investigation. That some
thing unusual happens there is demonstrated in this 
report. We hope in a later report to make a more de
tailed comparison of the superposition theory with the 
present results for both the pair and triplet distribution 
function. This allows a direct checking of the validity 
of the Kirkwood approximation. It can be anticipated 
that the pair and triplet distribution functions com
pare almost quantitatively but that some finer details 
are left out in the superposition approximation. This 
can be ascribed to the fact14 that the superposition 
approximation is equivalent to leaving out some of the 
highly linked cluster diagrams in the rigorous Mayer 
cluster expansion. It is because of these omitted terms 
that the pressure calculated from the theory for hard 
spheres is too low. These highly linked diagrams be
come relatively more important at high densities, so 

12 J. G. Kirkwood, J. Chern. Phys. 3, 300 (1935). 
13 J. G. Kirkwood, E. K. Maun, and B. J. Alder, J. Chern. Phys. 

18, 1040 (1950). 
14 B. R. A. Nijboer and L. van Hove, Phys. Rev. 85, 777 (1952). 

that at lower densities the theory is quantitatively 
correct. Unfortunately, however, in the interesting 
liquid-density region the theory is only semiquantita
tive, but still the best analytic theory available. 

To carry the theory logically one step further by 
making the superposition approximation in the space 
of four molecules (the free-volume theory carries it out 
in the space of only two molecules16) is a formidable 
mathematical problem. Even if this were done, as the 
previous discussion showed, it would not yet lead to 
quantitative results. In order to get quantitative results 
the superposition approximation would have to be made 
in the space of 20 or so molecules. Even a solution of 
the equation resulting from the superposition approxi
mation with four particles would require extensive use 
of computers, so it was felt best to try the present 
calculational approach to learn more about what is 
ultimately required of an analytical description of the 
classical many-body problem. 

The study of the entropy clearly shows the superiority 
of the superposition theory over the free-volume 
theory. Table XIV makes such a comparison of the 
excess entropy, SE, defined as follows, 

S=-Nk Inp+S*(T)+SE, 

where 

SEINk= E'Vbpv/NkT) -1J(vo/v)d(vlvo) 

+ In (pvlNkT) , (4) 
and 

S*(T) = lim[S+Nk InpJ. 
p->o 

SE is the excess entropy at constant pressure over that 
of an ideal gas. The free-volume theory gives much too 
Iowan entropy because the particles are ordered on 
lattice positions. However, when the free-volume theory 
is considered from the point view of a two-particle 
periodic boundary-condition problem then the entropy 
is considerably raised even though the equation of state 
is the same for the body-centered cubic lattice. We hope 
to discuss this more fully in a later paper. The excess 
entropy calculated from the superposition theory is in 
quite good agreement with the present results. Only at 
the highest density does any discrepancy appear. 

Figure 2 also shows the pressure resulting from the 
five term virial expansion (labeled vir) 

(pvINkT) -1 = (blv) +0.62S (b/V)2+0.287(blv) 3 

+0.l1S(blv).4 (S) 

At low density perfect agreement with this expression is 
obtained as it must be (see Table X). At higher densi
ties the expansion no longer converges; however further 
terms are hard to evaluate analytically. These further 
terms are also hard to get from the numerical results 

16 J. G. Kirkwood, J. Chern. Phys. 18, 380 (1950). 
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because no effort has been made to obtain precise and 
more data points in the intermediate-density region. 
The precision required of the data is very high in order 
to say with confidence what the next virial coefficients 
are going to be. All that can be said with confidence 
with the available results is that the sixth and seventh 
virial coefficients are positive. The data can be em
pirically fitted up to the transition density adding a 
term 0.079(b/v) 6 to Eq. (5). Only slight improvement 
can be obtained over this fit by adding two terms 
0.046 (b/v) 5+0.02 (b/v) .6 These terms may not have any 
relation to the theoretical higher virial coefficients. 

The fact that all the known virial coefficients are 
positive has theoretical impact on the question of the 
divergence of the virial expansion for hard spheres. If 
they were all positive it would be of course impossible 
to get a flat pressure volume region or a van der Waals 
loop indicative of a first-order phase transition. If there 
then is a phase transition, with all the coefficients 
positive, the series either diverges at the phase transi
tion or, what appears more likely, the series continues 
into a metastable fluid region. This region can be 
artifically generated on the calculator and will be dis
cussed in the next section. The earlier Monte Carlo 
results16 had indicated that some of the higher virial 
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FIG. 3. Equation of state in the high-density region. The curves 
are labeled by the number of particles which were used. For 32 
particles both the solid and fluid branch are graphed. The signifi
cance of the dotted lines is that these curves were obtained by 
using unusual initial configurations and hence these curves do not 
represent a usual equilibrium state of the system. 

18 M. N. Rosenbluth and A. W. Rosenbluth, J. Chern. Phys. 
22,881 (1954). 
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FIG. 4. Equation of state in the high-density region. The solid 
lines represent the data for the 32-particle system in the solid 
and fluid branches. The dashed line is calculated by the free
volume theory in the region where it is accurate. The triangles 
represent the equation of state for 32 particles in the extended 
fluid branch when that data has been corrected by subtracting 
an empirically determined constant from vivo (Table IX). The 
dots represent the equation of state for 31 particles when their 
close-packed volume has been corrected to that of 32 particles. 
The square represents an uncorrected point on the fluid branch of 
the 31-particle system. 

coefficients are negative. This was in error due to in
sufficiently long runs.4 

(C) High-Density Region 

The high-density results for the equation of state 
are shown in Fig. 3. As mentioned before, there is a sys
tematic trend in the pressure with the number of par
ticles (solid lines) but the differences vanish at high 
enough densities. The 96-particle results are plotted 
explicitly although they do not significantly differ from 
the other large-system results. This is of interest because 
the 96-particle system was placed into a hexagonal 
closed-packed lattice with a rectangular parallelopiped 
box while all the other large systems were in a cubic 
box containing a face-centered crystal. These two 
lattices differ only in the arrangement of the third 
nearest neighbors of a particle. As has already been 
seen, these third neighbors do not significantly affect the 
results and hence it is not surprising that the hexagonal 
and face-centered lattice results agree over the entire 
density region. 

The dotted curves in Fig. 3 demonstrate that in the 
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FIG. 5. Upper graph: The configuration of a 32-particIe system 
in the yz projection for a face-centered lattice. Each dot represents 
two particles on top of each other. Lower graph: The configura
tion of the 32-particle system at the end of the run in the ex
tended fluid branch. The y'z' axis refers to the projection graphed 
in Fig. 6. 

solid region for these small systems the results depend 
on the number of particles studied as well as their 
initial configuration. In the fluid phase these factors 
did not influence the pressure, as the results for 100 
particles in Table X show. The 100 particles were 
initially placed in some random configuration, but one 
which allowed the spheres to be quite tightly packed, 
so that quite high densities could be achieved. The 
density could then be lowered by shrinking the diameter 
of the spheres, keeping the cubic box the same dimen
sions. At high densities the system could not rearrange 
itself to a perfect crystal as the higher pressure in Fig. 3 
indicates. Even if this system were able to unjam 
itself it could not form a perfect crystal but only one 
with eight holes, since that is required by the periodic 
boundary conditions for a face-centered cubic lattice. 
However, when the density was lowered to that of a 
fluid, the system was able to rearrange itself to obtain 
the proper local order. 

A system with an artifically introduced single hole 
was then set up to study its behavior in this region. The 
resultant 31-particle pressure is shown in Fig. 3, and 
it is again higher in the solid region, but not as high 
as the 100-particle system since it is much more ordered. 
However, again, as the square point in Fig. 4 shows, 
in the fluid region the pressure is the same as that of a 
32-particle system. The results on the solid side can, 
however, be understood if it is considered that the hole 
is just an inaccessible region to the system, in other 
words, the 31-particle system behaves like a 32-particle 
system. Thus, if the close-packed volume, 210, is con
verted to' that of a 32-particlesystem, the dots in 

Fig. 4 result, yielding perfect agreement in the pressure 
with that of the perfect crystal. Actually the agree
ment should not be perfect since the particles surround
ing the hole have a slightly larger volume accessible to 
them, so that the pressure should be slightly smaller 
than that of a perfect crystal. At high densities of the 
solid even this difference should disappear, since the 
particles surrounding the hole are completely locked 
in. Within the accuracy of the present results this 
difference could not be picked up even at the lowest 
solid densities. 

It is of interest to check whether this hole has moved 
during a run from the point of view of diffusion theory. 
A mechanism of diffusion in solids is by means of a 
particle moving into the hole leaving a hole in its 
stead. Even if this did not take place it would not 
alter the above argument for changing Vo. An examina
tion of the positions of the particles at the end of the 
rather short run at the lowest solid density showed 
that this phenomenon had not occurred. This is not 
surprising since such a motion would involve a highly 
cooperative movement of the particles surrounding 
the hole. Furthermore, the few particles used seriously 
restrict such fluctuations. 

The extension of the fluid branch to solid volumes for 
32 particles was accomplished by still other means. 
The dashed curve labeled 32F in Fig. 3 was generated 
by a gradual compression of a :fluid 32-particle system. 
This gradual compression was achieved by a slow swell
ing of the particles, keeping the volume of the system 
unchanged. The striking feature of these results is 
that no two-state behavior is found and that a smooth 
extension of the fluid branch can be generated at much 
higher pressures than the crystal branch. The fact 
that a two-state behavior was not observed is not sur
prising since at the lowest compressed density studied, 
v/vo= 1.4948 (see Table IX), it was also not possible 
to effect the transition from the solid to the fluid 
branch. The reverse transition also requires a large 
fluctuation which is not very probable under these 
jammed conditions. The liquid and solid regions of 
phase space have thus been isolated, if not at this 
density certainly at slightly higher densities. No matter 
how long the calculator would run, no transition be
tween the two states is possible for these finite systems. 

The higher pressure for the extended fluid curve 
compared to the 100-particle system indicates that at a 
given density the 100 particles are less jammed up. This 
is because the larger system has more voids (the 
equivalent of eight holes) which are at least partially 
accessible to the particles. The uniqueness of the ex
tended fluid branch has not been investigated, since 
only a single run has been made. It might be expected 
that there exists a fairly narrow band of curves extend
ing the fluid branch depending on from what particular 
configuration the compression was .started. The only 
relevant data on this was obtained by the Monte Carlo 
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FIG. 6. The xy' projection of the positions of the 32-particle system referred to in Fig. 5. The horizontal and vertical lines refer to the 

repeat planes due to the periodic boundary conditions. The crosshatched lines connect positions of atoms in the lower layer (dots). The 
crosses represent positions of atoms in the layer above. The squares represent location of atoms which are missing. 

method17 using a similar procedure for 32 particles. The 
curves do differ in some detail but are over-all in sub
stantial agreement. 

Since it was possible to understand the behavior of 
the 31-particle system by correcting its close-packed 
volume, it should be possible to do the same thing 
for these other disordered systems except that the close
packed volume has to be found empirically. In other 
words, a free-volume type of theory should still work 
since the particles are localized, but the average free
volume per particle cannot be calculated from a crystal 
lattice model. The free volume could be calculated if 
the volume taken up by the imperfections were known. 
The close-packed volume for the extended fluid branch 
system was determined from the point at which the 
pressure became infinite (about v/vo= 1.1506). If the 
pressure is plotted against v/vo-0.1506 (Table IX and 
Fig. 4) good agreement with the crystal branch is 
obtained in the region where the free-volume theory is 
accurate. 

An examination of the positions of the particles at 
the highest density studied on the extended fluid branch 
reveals that they are not in a completely disordered 
array but rather in a slightly imperfect hexagonal close
packed lattice. Figure 5 compares the positions pro
jected in the yz plane of a perfect face-centered cubic 
crystal (upper graph) to that found at the end of the 
compression run (lower graph). It is obvious that on an 
over-all basis the lower graph shows quite a bit of order. 
However, where the z' symbol is located on the graph 
an atom is missing, and in the plane above and below 
that hole some disorder exists. The projection in the xy' 
plane given in Fig. 6 makes this clearer. Two planes of 
particles each perpendicular to the z' axis are plotted. 
The missing atom is indicated by a square. The crystal 
does not repeat every cube in the y' direction but every 
three cubes as indicated by the heavy vertical line. 
However, in the x direction the repetition distance is 
the usual one of every cube as indicated by the horizon-

17 W. W. Wood, (private communication). 

tal lines. The crossed lines connecting the particles in 
one layer are drawn to emphasize the nearly hexagonal 
nature of the lattice. The crosses for the location of the 
particles in the layer above fall near the center of the 
triangles formed by the crosshatched lines as they 
should for a hexagonal lattice. There appears to be one 
fault in the crystal which might be described as a slip 
in addition to the hole. It is associated with the hole 
in the plane below (on the very left of Fig. 6 and re
peated periodically just to the right of the heavy 
vertical line for purposes of clearer demonstration). 
The particles above the hole are quite regularly ar
ranged as shown in the middle of the box in Fig. 6. The 
slip also appears very clearly again (about i over in the 
box) in the upper layer of particles marked by crosses. 

Undoubtedly these same imperfections would not 
appear each time such a compression was tried, as 
mentioned earlier. However, there are only a limited 
number of ways to have imperfections in such small 
systems. What would happen if the same thing were 
tried on larger systems is pure speculation. Very likely, 
however, a similar slightly disordered system would 
result if the fluid state compressed so fast that not 
enough time were allowed to reach the equilibrium 
state at each density. This behavior is quite analogous 
to cooling a liquid so fast that a glass forms. A glass is 
also believed to give a high degree of local order. Larger 
systems can, of course, have more complicated imperfec
tions; however, it is the instantaneous local arrange
ments in the fluid that primarily determines what sort of 
faults are frozen in. 

CD) Collision Rate 

The results for the collision rate relative to the colli
sion rate at infinite dilution for the various systems are 
given in Tables I through IX, and some of the results 
are graphically presented in Fig. 7. The collision rate 
ratio generally conforms to the behavior of the equa
tion of state. Thus, as Fig. 7 shows, the collision rates 
for systems of less than 96 particles are low on the 
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FIG. 7. Collision rate relative to the Boltzmann collision rate as 
a function of vivo. The fluid branch is represented by the upper 
curve for systems of 32 particles and larger. The dashed curve 
represents the extended fluid branch. The solid branch is repre
sented by the heavy curve for systems of 96 particles and larger, 
and by the labeled curves for smaller systems. 

solid branch just as the equation of state is. The colli
sion rates for eight-particle systems in the fluid branch 
seem unusually low (Table II) although the pressures 
are high. 

As Eq. (2) shows, the collision rate ratio is purely a 
function of the equation of state according to the theory 
of Enskog. The R column in Tables I through IX is the 

.. .. 
z 

6 

Ii 

~4 
i;. 

3 

8 

c 

20 0.1 0.2 0.3 .0.4 0.5 0.6 0.7 o.e 0.9 LO 1.1 1.2 
. (4/N) 115 

FIG. 8. Dependence of the equation of state on the number of 
particles at lower density. Curve A refers to v/vo= 1.65, curve B 
to v/vo= 1.7678 and curve C to v/vo= 2.0 in the fluid branch. 
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FIG. 9. Dependence of the equation of state on the number of 
particles at higher density. Curves A, B, C, D, and E refer to, 
respectively, v/vo= 1.4, 1.5, 1.525, 1.55, and 1.65 in the solid 
branch. 

ratio of the experimental value of r Iro to the theoreti
cal one. The theoretical one is determined by the use of 
the equation of state as obtained by the computer work 
for the same system. A striking confirmation of the 
Enskog theory of collision rates is obtained for systems 
larger than 32 particles, which shows that this ratio is 
unity within statistical significance at all densities. 
This in turn implies that the molecular chaos approxi
mation made by the Enskog theory is a valid one insofar 
as the collision rate is concerned. The validity of this 
assumption7 at solid densities is certainly doubtful. 
The result then probably means that the collision rate is 
insensitive to this approximation. However, when 
artificial velocity correlations are introduced among the 
nearest neighbors of a particle as in small systems, the 
experimental to theoretical collision rate does reflect 
this correlation. This ratio is less than unity and the 
deviation is the largest for the smallest system. It is 
remarkable that this deviation is independent of density 
within the accuracy of the results; although the eight-

FIG. 10. Dependence of the equation of state on the number of 
particles for v7vo= 1.60 in both the fluid and solid branch. 
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particle case is a spurious exception, the deviation was 
much larger in the fluid phase than in the solid phase. 

(E) Dependence of the Results on the Number 
of Particles 

Although we intend to discuss the dependence of the 
results on the number of particles more fully when the 
study of larger systems in both two and three dimen
sions is completed, Figs. 8-10 are presented to demon
strate the dependence found so far which was previ
ously discussed qualitatively. The results are plotted 
against (4/ N) i. The factor four is of not much signifi
cance except that it normalizes the results to the 
smallest cubic cell that can generate a face-centered 
lattice. The choice of the reciprocal one-third power of 
the number of particles which is characteristic of the 
linear dimensions of the system has been chosen em
pirically as the power which makes the graphs most 
nearly linear. 

It is only at low density that it has been possible to 
investigate theoretically the dependence of the results 
on the number of particles. The first few virial coeffi
cients for an infinite system (subscript 00) of hard 
spheres are related to those of a finite periodic system18 

(subscript N) by 

BN =Bco(1-1/N) 

CN =Cco[l+ (1/5N) - (6/SN2)], 

where Band C are the second and third virial coeffi
cients. For one particle these expressions correctly 
reduce the virial coefficients to zero and for a system 
as small as 32 particles the corrections are already small. 
For dense gas systems the results are given in Fig. 8 and 
show that the pressure first increases as N increases and 
then decreases very slightly (curve C). At higher 
densities, but still in the fluid region, the pressure de
creases monotonically as N increases (curves A and B) . 

181. Oppenheim and P. Mazur, Physica 23, 197 (1957). 

All curves show that the results have become pretty 
independent of N for the larger systems. 

Figure 9 shows the dependence of the pressure on N 
for the solid branch at various densities. The lines drawn 
are the best ones to fit the data and show that the pres
sure increases as the N increases. An extrapolation to 
an infinite system along these straight lines is, however, 
not justified. At the densities where the most extensive 
runs were made and the largest systems were studied 
(curve B) and lower curve in Fig. 10, the results ap
pear within the accuracy of the results to be indepen
dent of N for larger systems justifying the previous 
discussions. Figure 10 plots the dependence of the 
results on N for both the fluid and solid branch of a 
system and shows that even under the worst condition 
of extrapolation of the solid branch the pressure 
difference between the two branches does not vanish. 

CONCLUSION 

It appears that systems as small as 100 particles are 
sufficient to describe accurately the equilibrium be
havior in the fluid region of hard spheres. In the two
state region four particles are insufficient to establish 
both states and 500 particles are insufficient to make 
the two states coexist. In the solid region for these 
small systems the initial state of the system and the 
number of particles must be selected so as to achieve 
the lowest free energy. 

The Enskog theory for the collision rate is valid over 
the entire density region, while the free-volume theory 
is valid only at high densities and the superposition 
theory at low densities. In the intermediate-density 
region analytical theories for the equation of state have 
to take into account higher-order correlations between 
the particles. 
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