Problem Set 3

From *Classical Mechanics*, R. Douglas Gregory:

Chapter 6: 6.1, 6.5, 6.10

Question 1. Impulse-Momentum Theorem The impulse \(\vec{J}(t_1, t_2) \) over the time interval \(t_1 \) to \(t_2 \) of a force \(\vec{F}(t) \) is defined as:

\[
\vec{J}(t_1, t_2) = \int_{t_1}^{t_2} \vec{F}(t) \, dt.
\]

(1) Using Newton’s Law for the momentum \(\vec{p} \) of a particle of mass \(m \) and the fundamental theorem of calculus show that \(\Delta \vec{p} = \vec{p}(t_2) - \vec{p}(t_1) = \vec{J}(t_1, t_2) \). This is the Impulse-Momentum Theorem: The change in momentum is equal to the Impulse.

(2) Show that the average force over the interval from \(t \) to \(t + \Delta t \), \(\vec{F}_{avg} \), times the size of the interval \(\Delta t \) is equal to the impulse \(\vec{J}(t, t + \Delta t) = \vec{F}_{avg} \Delta t \), and therefore:

\[
\frac{\Delta \vec{p}}{\Delta t} = \vec{F}_{avg}.
\]

This discrete version of Newton’s Law is not an approximation and is very useful when forces come in short bursts and otherwise there are no net forces.