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Using delaunay triangularization to characterize
non-affine displacement fields during athermal,
quasistatic deformation of amorphous solids†

Weiwei Jin, a Amit Datye, a Udo D. Schwarz,ab Mark D. Shattuck c and
Corey S. O’Hern *adef

We investigate the non-affine displacement fields that occur in two-dimensional Lennard-Jones models

of metallic glasses subjected to athermal, quasistatic simple shear (AQS). During AQS, the shear stress

versus strain displays continuous quasi-elastic segments punctuated by rapid drops in shear stress,

which correspond to atomic rearrangement events. We capture all information concerning the atomic

motion during the quasi-elastic segments and shear stress drops by performing Delaunay

triangularizations and tracking the deformation gradient tensor Fa associated with each triangle a. To

understand the spatio-temporal evolution of the displacement fields during shear stress drops, we

calculate Fa along minimal energy paths from the mechanically stable configuration immediately before

to that after the stress drop. We find that quadrupolar displacement fields form and dissipate both

during the quasi-elastic segments and shear stress drops. We then perform local perturbations (rotation,

dilation, simple and pure shear) to single triangles and measure the resulting displacement fields.

We find that local pure shear deformations of single triangles give rise to mostly quadrupolar

displacement fields, and thus pure shear strain is the primary type of local strain that is activated by bulk,

athermal quasistatic simple shear. Other local perturbations, e.g. rotations, dilations, and simple shear of

single triangles, give rise to vortex-like and dipolar displacement fields that are not frequently activated

by bulk AQS. These results provide fundamental insights into the non-affine atomic motion that occurs

in driven, glassy materials.

1 Introduction

The mechanical response of amorphous solids, such as
colloidal and metallic glasses, is extremely complex. For example,
during shear, compression, and other bulk mechanical tests,
amorphous solids display collective spatio-temporal dynamics
including stress localization, shear banding, and fracture.1–6

In crystalline solids, the motion of atoms near topological defects

(such as point defects, dislocations, and grain boundaries) and
the interaction between these defects control the mechanical
response of the system.7 However, it has been difficult to identify
the structural ‘‘defects’’ that determine the mechanical response
in amorphous solids.8

Early work by Argon,9 and extensive further studies by Falk
and Langer,10 have emphasized the importance of shear
transformation zones (STZs), which are clusters of atoms
(or particles) that move cooperatively with much larger
displacements than the surrounding atoms, in amorphous
solids undergoing applied deformations. Subsequent studies
have attempted to characterize the size, shape, activation, and
evolution of STZs in amorphous solids during applied
deformation.4,8,11–18

There are numerous open questions concerning the
definition and interpretation of STZs in amorphous solids.
First, are STZs the structural ‘‘defects’’ that control mechanical
response in amorphous solids, similar to topological defects in
crystalline solids, or are STZs the atomic flow fields that result
from yet undetected structural defects? The majority of recent
studies argue for the former case, i.e., STZs should be classified

a Department of Mechanical Engineering and Materials Science, Yale University,

New Haven, Connecticut 06520, USA
b Department of Chemical and Environmental Engineering, Yale University,

New Haven, Connecticut 06520, USA
c Benjamin Levich Institute and Physics Department, The City College of New York,

New York, New York 10031, USA
d Department of Physics, Yale University, New Haven, Connecticut 06520, USA
e Department of Applied Physics, Yale University, New Haven, Connecticut 06520,

USA
f Graduate Program in Computational Biology and Bioinformatics, Yale University,

New Haven, Connecticut 06520, USA. E-mail: corey.ohern@yale.edu

† Electronic supplementary information (ESI) available: We include additional
data that further illustrates points made in the main text. See DOI: 10.1039/
d1sm00898f

Received 16th June 2021,
Accepted 6th September 2021

DOI: 10.1039/d1sm00898f

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 1
0 

Se
pt

em
be

r 
20

21
. D

ow
nl

oa
de

d 
on

 1
0/

12
/2

02
1 

9:
31

:3
0 

PM
. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-9901-4642
http://orcid.org/0000-0002-1776-0642
http://orcid.org/0000-0001-8473-2505
http://orcid.org/0000-0002-8272-5640
http://crossmark.crossref.org/dialog/?doi=10.1039/d1sm00898f&domain=pdf&date_stamp=2021-09-20
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/d1sm00898f
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM017038


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 8612–8623 |  8613

as the fundamental defects that control the mechanical
response of amorphous solids.13,19–30

During quasistatic loading, the stress response of amorphous
solids first shows elastic behavior for small strains, followed by
sudden drops in stress caused by atomic rearrangement events.
This behavior is repeated, i.e., smooth quasi-elastic increases in
stress followed by rapid stress drops, with further increases in
strain. Non-affine collective atomic displacements can occur
in the quasi-elastic regions, but the non-affine motion is much
larger during the stress drops and it has been extremely difficult
to predict at what strains the stress drops occur and the resulting
non-affine atomic motion.19,20,24–26,28,29 Several groups have
attempted to predict ‘‘soft spots’’ in amorphous solids, i.e.,
regions of large non-affine displacements resulting from
mechanical instabilities that occur during athermal quasistatic
shear.24–27,31–34 Methods that incorporate higher-order spatial
derivatives of the dynamical matrix can predict soft spots further
from the instability than first-order methods,24–26,31,34 but the
accuracy of these methods is limited by the magnitude of
the stress drop. To gain further insight into the non-affine
displacement fields resulting from large stress drops, in this
article, we follow the evolution of the system along minimal
energy paths as it evolves from the mechanically stable state
before to that after the instability.

In this article, we address several important, open questions
concerning the mechanical response of amorphous solids by
developing a novel methodology for characterizing non-affine
deformation. We focus on a simple two-dimensional (2D)
model of Cu50Zr50 metallic glasses35 undergoing quasistatic
simple shear. We decompose the system into Delaunay trian-
gles, which enables us to calculate exactly the deformation of
each triangle at the next strain step in terms of the deformation
gradient tensor and the reference triangles at the current strain
step. We find several key results. First, using a nudged elastic
band method36–40 to evolve the system from the mechanically
stable (MS) state before a stress drop to the resulting MS state
after the stress drop, we study the evolution of the non-affine
displacement field during stress drops. We find that quadrupolar
structures form, move, and dissolve during the stress drops. In
addition, we apply small perturbations (dilation, rotation, simple
and pure shear) to single triangles in the system, and characterize
the resulting non-affine displacement fields following energy
minimization in terms of fields set up by point-charges, vortices,
dipoles, and quadrupoles. Rotation and simple shear of single
triangles give rise to mostly vortices, dilations of single triangles
give rise to mostly dipolar fields, and pure shear deformations of
single triangles give rise to mostly quadrupolar fields. Since we
find that quadrupolar displacement fields predominate during
globally applied quasistatic simple shear, these results show that
local pure shear deformations of single triangles are the main
defects that are excited during bulk, quasistatic simple shear
deformations.

The remainder of the article is organized as follows. In
Section 2, we describe the Lennard-Jones model, the thermal
quenching protocol used to generate the zero-temperature
glasses, and the athermal, quasistatic simulations of simple shear.

In Section 3, we present our main results including the accuracy of
predictions of the displacement field using the non-affine velocity,
the evolution of the non-affine displacement field during stress
drops, and the response of the system to local perturbations of
single triangles. We provide the conclusions and promising future
research directions in Section 4. We also include three appendices.
In Appendix I, we describe deformations of the local triangles in
terms of a rotation matrix, the strain tensor, and its invariants.
We then relate these quantities to D2

min, which is frequently used
to characterize non-affine displacements,10 in Appendix II.
In Appendix III, we describe four order metrics to characterize
the resulting displacement fields after applied deformations.

2 Methods

We focus on a simple 2D binary Lennard-Jones model for
Cu50Zr50 metallic glasses. Atom types A (Zr) and B (Cu) interact
via the truncated and force-shifted, pairwise Lennard-Jones (LJ)
potential:

UabðrijÞ ¼
fabðrijÞ � fabðrcÞ � ðrij � rcÞ

dfab

drij

����
rij¼rc

; rij o rc;

0; rij � rc

8>><
>>: ;

(1)

where rij is the center-to-center separation between atoms i and
j, the cutoff distance rc = 2.5sab, a, b = A, B, and

fabðrijÞ ¼ 4eab
sab
rij

� �12

� sab
rij

� �6
" #

: (2)

The parameters sAA = 1.0, sBB = 0.7975, sAB = (sA + sB)/2, eAA =
1.0, and eBB = 0.5584 were chosen to match the sizes and
cohesive energies of Zr and Cu.41 We set eAB = (eAA + eBB)/2 �
DHmix using the heat of mixing DHmix from experiments.42 The
mass ratio for CuZr alloys is mA/mB = 1.435. In the following, we
display the data using LJ units, where lengths, times, stresses,

and temperatures are given in units of sAA, sAA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mA=eAA

p
; eAA/sAA

2,
and eAA/kB, respectively.

Each system consists of N = 3600 atoms (half A and half B) in
a square cell with area A and periodic boundary conditions.
We have also carried out studies with N = 8100 and 14400 to
assess system-size effects as shown in the ESI.† The systems are
first equilibrated at high temperature T = 5.0 (with pressure P =
10) in the liquid state well above the melting temperature and
then cooled (at fixed pressure) to low temperature T = 0.005
using a fast cooling rate of 0.08 to form disordered, glassy
states. The first peak in the radial distribution function satis-
fied g(r1) o 6 for all low-temperature glasses studied. The Nosé–
Hoover thermostat and barostat were used to control the
temperature and pressure. The low-temperature glasses were
then decompressed to reach zero pressure and minimization
of the total potential energy U ¼

P
i4 j

UðrijÞ; using the conjugate

gradient method, was applied to reach zero temperature.
We then subject each glassy sample to athermal, quasistatic
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simple shear (AQS) deformations.20 Specifically, we apply an
affine simple shear strain dg = 2 � 10�6 to the current atomic

positions, xi and yi, such that the new positions satisfy x
0
i ¼

xi þ dgyi and y
0
i ¼ yi in concert with Lees-Edwards boundary

conditions.43 After each applied simple shear strain, we perform
energy minimization and repeat the process for a total strain of
g = 0.3. All of the simulations were conducted using the LAMMPS
molecular dynamics simulator.44

We calculate the stress tensor Smn of the system, where m,
n = x, y, using the virial expression:43

Smn ¼
1

A

XN
i4 j¼1

rijmfijn ; (3)

where rijm is the mth component of the separation vector -
rij

pointing from atom i to atom j and fijn is the nth component of
the interparticle force

-

fij on atom i from atom j. The other
important quantities, i.e., the strain tensor to characterize the
deformations of the Delaunay triangles and order metrics to
describe the structure of the atomic displacement fields, are
defined in Appendices I and III, respectively.

3 Results

In this section, we describe the results from the simulations of 2D
binary Lennard-Jones glasses undergoing athermal, quasistatic
simple shear. We first show the shear stress versus simple shear
strain for single zero-temperature samples. The shear stress first
increases linearly with strain, until a plastic, atomic rearrangement
occurs, causing a discontinuous drop in the shear stress. After the
stress drop, there is a quasi-linear increase in the shear stress
followed by another stress drop. The quasi-linear increases in shear
stress, punctuated by discontinuous drops, continue over the full
range of strain. We show that the non-affine atomic motion during
the quasi-linear segments can be accurately predicted using linear
response, while the error in predicting the non-affine motion
during the stress drops increases with their magnitude. To better
understand the collective motion during stress drops, we
implement a nudged elastic band method to identify intermediate
states as the system traverses the minimum energy path from an
unstable state to a new potential energy minimum. We characterize
the deformation of the system using the strain of individual
Delaunay triangles. We compare the Delaunay triangle representa-
tion of local strain to D2

min, which has been used frequently to
characterize non-affine particle motion during AQS. Lastly, we
investigate the displacement fields that arise in response to all
possible local perturbations of Delaunay triangles and compare
them to the displacement fields that occur during bulk AQS.

3.1 Shear stress versus shear strain

In Fig. 1(a), we plot the shear stress Sxy as a function of the
imposed simple shear strain g for a single sample during
continuous AQS in the forward direction. As found in previous
studies, Sxy versus g possesses quasi-linear elastic segments
that are punctuated by discontinuous drops in the shear
stress.16,19,20,45,46 Serrated stress–strain curves have been

observed in experiments of compressed metallic glasses at
low strain rates.47–49 To unambiguously identify all of the shear
stress drops, we also perform a series of one-step backward AQS
steps, with the same dg as that of AQS in the forward direction,
at each g. This method yields a pair of mechanically stable
configurations at the same applied strain g, one from forward
AQS and one from one-step backward AQS, as shown in
Fig. 1(b). At most strains, the shear stress from forward AQS,

Sxy(g), is the same as that for one-step backward AQS, S
0
xyðgÞ.

The shear stress of the two configurations is different at the
discontinuous stress drops. In the inset to Fig. 1(b), we plot the

magnitudes of the shear stress differences DSxy ¼ jSxy � S
0
xyj

in ascending order for the AQS trajectory in Fig. 1(a). For the
continuous, quasi-elastic segments, the magnitudes of the
shear stress differences satisfy 10�16 o DSxy o 5 � 10�11.
There is a gap of roughly six orders of magnitude between the
small shear stress differences caused by errors in force balance
(in the continuous quasi-elastic segments) and the true stress
drops that satisfy 5 � 10�5 o DSxy o 0.23. Immediately after a
stress drop, a quasi-elastic segment begins at gs and ends at the
next stress drop at ge.

Fig. 1 (a) Shear stress Sxy versus simple shear strain g for a single zero-
temperature configuration during athermal, quasistatic shear (AQS). (b) Close-
up of the data in (a). The black-filled squares indicate AQS in the forward
direction, and the red open circles indicate one-step backward AQS from the
configuration with a strain value immediately above it. The shear strains gs and
ge give the start and end of a quasi-elastic segment with no discontinuous
stress drops. Inset: The shear stress difference DSxy ¼ SxyðgÞ � S

0
xyðgÞ

��� ���
between a configuration obtained through AQS in the forward direction,
Sxy, and that obtained through AQS in the backward direction from the strain

value immediately above it, S
0
xy, sorted in ascending order.
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Within linear response, the non-affine atomic motion
during AQS can be predicted using

Hij
d~rj
dg
¼ �~Xi; (4)

where -
rj = (xj,yj) gives the coordinates of the jth atom, Hij ¼

@2U

@ri@rj
is the Hessian matrix, and ~Xi ¼

@2U

@~ri@g
is the force on atom

i that is induced when the system is subjected to an affine
simple shear deformation.20 Using eqn (4), the predicted
atomic positions (xp

i ,yp
i ) at the next strain g + dg are

x
p
i ¼ xi þ dgyi þ dg

dxi

dg
; (5)

y
p
i ¼ yi þ dg

dyi

dg
: (6)

After applying eqn (5) and (6) iteratively, we can estimate the
target atomic positions at the end of each quasi-elastic segment
(at ge) using the reference atomic positions from the start of
each segment (at gs). In addition, we can predict the target
atomic positions after each shear stress drop using the
reference atomic positions before the shear stress drop.

We can obtain the error in the predicted atomic positions
by calculating the magnitude-squared of the difference (DR)2 =
|
-

Rp � -

Rs|/N between the predicted atomic configurations
-

Rp and
those directly from the AQS simulations,

-

Rs, where
-

R =
(x1,y1,. . .,xN,yN). In Fig. 2, we show a scatter plot of (DR)2 versus
the magnitude of the difference in shear stress DSxy between
the target and reference configurations for quasi-elastic
segments and shear stress drops. For most systems, we
obtain extremely accurate predictions for the atomic positions
at the ends of the quasi-elastic segments, (DR)2 B 10�8 using

dg = 2 � 10�6. (For a few quasi-elastic segments, the predictions
generated Hessians with negative eigenvalues, which give larger
values of (DR)2.) In contrast, (DR)2 B DSxy

2 scales quadratically
with the magnitude of the shear stress difference for the shear
stress drops, and (DR)2 does not decrease with decreasing dg.
Thus, predictions of the atomic positions after stress drops are
only accurate for extremely small stress drops using this
method. In the next section, we will introduce an approach
for predicting the non-affine aotmic motion during large
stress drops.

In Fig. 3(a) and (b), we display the non-affine displacement
fields near the beginning and near the end of a particular
quasi-elastic segment. In both displacement fields, we find
Eshelby-like quadrupolar structures.1,20,26,50 During this
quasi-elastic segment, the quadrupolar structure on the right
side of the image in (a) dissolves with increasing strain and a
new one on the left side of the image forms in (b). Movies of
the evolution of the non-affine displacement fields during
quasi-elastic segments are shown in the ESI.† We find that even
though complex collective atomic motion occurs frequently
during the quasi-elastic segments, the displacement fields at
the ends of the quasi-elastic segments can be predicted
accurately using the configurations at the start of the quasi-
elastic segments and eqn (5) and (6).

In Fig. 3(c), we show the non-affine displacement field
calculated using the last configuration of a quasi-elastic
segment and a configuration immediately after the shear stress
drop that ended the previous quasi-elastic segment. We identify
two distinctive quadrupolar structures in the displacement
field. However, if we employ eqn (5) and (6) to predict the

Fig. 2 The magnitude-squared of the difference between the predicted
target and reference configurations (DR)2 = |R

-p � R
-s|/N as a function of

the magnitude of the shear stress difference DSxy between the target and
reference configurations. Data for the quasi-elastic segments (shear stress
drops) are shown as black squares (red triangles). The start of each quasi-
elastic segment is used as the reference to predict the target configuration
at the end of the quasi-elastic segment. The reference and target config-
urations for the shear stress drops correspond to those immediately before
and after the stress drop.

Fig. 3 Non-affine displacement fields normalized to unity for quasi-
elastic segments and shear stress drops. The non-affine displacement
fields in (a)–(c) were obtained by comparing atomic configurations sepa-
rated by dg in a quasi-elastic segment. The displacement fields in (a) and (b)
correspond to configurations at 0.32 and 0.999 of the length of a
particular quasi-elastic segment, respectively. The displacement field in
(c) corresponds to a shear stress drop, and the configurations before and
after the shear stress drop were used to calculate the displacement field.
(d) The non-affine displacement field predicted using eqn (5) and (6) and
the atomic configuration before the shear stress drop in (c).
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non-affine displacement field using the last configuration of the
previous quasi-elastic segment, we obtain the displacement field
in Fig. 3(d), which only includes a single quadrupolar structure.
The non-affine displacement fields in Fig. 3(c) and (d) are clearly
different. These results emphasize again that the approach of
using the atomic configuration immediately before a shear stress
drop plus linear response is not sufficient to accurately predict
the atomic configuration after shear stress drops.

3.2 Minimum energy paths during shear stress drops

As shown in the previous section, if the shear stress drop is
large, one cannot predict the atomic configuration after the
stress drop using linear response applied to the atomic configu-
ration immediately before the stress drop. In this section, we
describe a nudged elastic band (NEB) method to obtain the
atomic configurations that occur along a minimal energy path
between the configuration before the shear stress drop and the
new mechanically stable configuration after the drop.36–40 A
series of configurations (called images) is generated by linearly
interpolating in configuration space between the initial and
final mechanically stable states. To do this, springs are added
between successive images to ensure equal spacing DR between
the images. The total force acting on each atom in image i is the
sum of two contributions,

-

Fi =
-

F>
i +

-

F8i , (7)

where
-

F>
i is the force arising from the interatomic potential

energy,

~F?i ¼ ~rUð~RiÞ � t̂i t̂i � ~rUð~RiÞ; (8)

and
-

F8
i is the spring force between successive images,

-

F8i = k(|
-

Ri+1 �
-

Ri| � |
-

Ri �
-

Ri�1|)t̂i (9)

where t̂i = ~ti/|~ti| is the normalized local tangent of image i,

~ti ¼
~Ri � ~Ri�1

j~Ri � ~Ri�1j
þ

~Riþ1 � ~Ri

j~Riþ1 � ~Rij
; (10)

k = 1 is the spring constant that ensures the images are
equidistant in configuration space, and

-

Ri is the atomic

configuration for image i. An optimization algorithm using
a Verlet integration scheme is used to move the image config-
urations such that

-

Fi = 0 for all i.36

In Fig. 4, we plot the shear stress Sxy and total potential
energy U as a function of the image index along a minimal
energy path for the shear stress drop in Fig. 3(c). Sxy and
U evolve continuously from the values immediately before
the shear stress drop to those after. DR and DSxy between
successive images are controlled by the total number of images,
n. We chose n such that DR B 10�8 and DSxy B 10�5 between
successive images. In contrast, the average shear stress drop
hDSxyi E 10�2 for forward AQS. Using this method, we will
calculate the non-affine displacement field and the local strain
tensor by comparing successive images in the next section.

3.3 Evolution of the displacement field

To characterize the local strain field during AQS, we perform
Delaunay triangulation using the atom centers as the vertices at
each strain g. Local strains at the atomic scale are then character-
ized through deformations of the triangles. Note that triangles in
two spatial dimensions (2D), or tetrahedra in 3D, represent the
largest grouping of atoms for which the deformation of the system
can be measured without any loss of information about the
atomic motion. Specific details concerning the definition of the
strain tensor from the Delaunay triangulation are provided in
Appendix I.

In Fig. 5(a), we show the von Mises strain evm
a of each triangle

a by comparing the two triangulations before and after the

Fig. 4 The shear stress Sxy (solid black line) and the total potential energy
U (solid red line) as a function of the index of roughly equally spaced
images in DR along the minimal energy path from the configuration
immediately before to that after the shear stress drop in Fig. 3(c).

Fig. 5 The von Mises strain evm
a of each triangle a during the shear stress

drop in Fig. 3 (c). (a) The von Mises strain calculated by comparing the
Delaunay triangulations immediately before and after the shear stress
drop. Evolution of the strain for the triangles within the two rectangular
boxes along the minimal energy path is shown in Fig. 6. (b)–(d) The von
Mises strain at image indexes l = 10, 110, and 230 at early, intermediate,
and end stages of the minimal energy path during the shear stress drop.
The reference triangulations are from images l � 1. The color scales from
blue to red indicate increasing von Mises strain (over the range [0,0.188]
for (a) and [0,0.002] for (b)–(d)).
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shear stress drop in Fig. 3(c). The triangles with relatively high
von Mises strain coincide with the locations of the quadrupolar
structures in Fig. 3(c). However, as discussed in the previous
section, to develop the ability to predict the atomic configurations
after shear stress drops, we must understand the evolution of the
atomic configurations along minimal energy paths during the
shear stress drops. Thus, we also calculate the von Mises strain
of each triangle as the system moves along a minimal energy path
from the beginning to the end of shear stress drops. In Fig. 5(b)–(d),
we show the von Mises strain for each triangle near the beginning,
middle, and end of the minimal energy path associated with the
shear stress drop in Fig. 3(c). The regions of large von Mises strain
in panel (a) and those in panels (b)–(d) do not coincide. Moreover,
the large strain regions in (b)–(d) dissolve and other large-strain
regions form along the minimal energy path.

To further illustrate the evolution of the large-strain regions
as a function of image index along a minimal energy path
during shear stress drops, we break up the atomic configurations
into subsystems. We consider triangles within rectangular
sections (as shown in Fig. 5(a)) with height 7sAA and equal-
sized bins in the horizontal direction with width sAA. The average
von Mises strain for the ith bin in a given rectangular section is

hevmii ¼
Xni
a¼1

Aia

Ai
evma ; (11)

where ni is the total number of triangles within the ith bin, Aia is
the area of triangle a that is included in the ith bin, Ai is the area
of the ith bin, and evm

a is the von Mises strain of triangle a.
In Fig. 6, we show the average von Mises strain for each bin
(along the vertical axis) in the rectangular subsystems in Fig. 5(a)
as a function of the image index along the minimal energy path
(along the horizontal axis). Note that the sizes of the rectangular
regions are scaled so that the images appear in a square format.

We make several observations about the evolution of the
strain field during the shear stress drop depicted in Fig. 5(a).
First, regions of large-strain form and dissolve during the shear
stress drop. In Fig. 6(a), a large-strain region forms near the
initial image and ends near image 70. Another large-strain

region begins to form near image 220. In Fig. 6(b), two nearby
large-strain regions form near image 100; the top one dissolves
around image 140, and the other dissolves around image 180.
Second, the large-strain regions do not form and dissolve
abruptly. For example, one side of the large-strain region in
Fig. 6(a) dissolves before the other. Similarly, one side of one of
the large-strain regions forms before the other in Fig. 6(b).
These results imply the existence of a wave speed for the
evolution of large-strain regions during shear stress drops.
A more complete visualization of the spatio-temporal evolution
of the large-strain regions during this shear stress drop is
included as a movie in the ESI.†

Previous studies of AQS applied to amorphous solids have
shown that although the particle dynamics is reversible,
significant non-affine motion frequently occurs during the
quasi-elastic segments.51,52 We find that quadrupolar structures
in the non-affine displacement fields also appear during quasi-
elastic segments (as shown in Fig. 3(a) and (b)). Thus, we find
similar results for the spatio-temporal evolution of large non-
affine strain regions during quasi-elastic segments and during
stress drop. In Fig. 7(a), we show the von Mises strain for each
triangle by comparing the triangulations at the beginning and
end of the quasi-elastic segment depicted in Fig. 3(a) and (b).
When the configurations at the beginning and end of the
quasi-elastic segment are compared, the large-strain regions are
randomly distributed throughout the system. In contrast, if we
compare configurations separated by small simple shear strain
increments dg, we can track the spatio-temporal evolution of the
large-strain regions. For example, if we focus on the regions of the
system that feature the two quadrupolar structures in Fig. 3(a) and
(b) (i.e., the rectangular boxed region in Fig. 7(a)), we find that a
region of large strain forms near image 30 and ends near 50 and
another large-strain region begins to form near image 120. Note
that the rest of the system is quiescent with extremely small strain.
Movies of the spatio-temporal evolution of the large-strain regions
during quasi-elastic segments are included in the ESI.†

Fig. 6 The average von Mises strain hevmii in each bin i (vertical axis) for
the (a) bottom and (b) top rectangular regions in Fig. 5(a) as a function of
the image index (horizontal axis) along the minimal energy path during the
shear stress drop in Fig. 5(a). The color scale for hevmii increases from blue
to red over the range [0,0.001]. The solid white lines highlight the spatio-
temporal evolution of two of the large-strain regions.

Fig. 7 (a) The von Mises strain evm
a for each triangle for the quasi-elastic

segment in Fig. 3(a) and (b). The strain is obtained by comparing the
triangulations from the start and end of the quasi-elastic segment. (b)
Evolution of the average von Mises strain hevmii (bin index versus image
index) for triangles within the rectangular boxed region in (a) during the
same quasi-elastic segment in (a), which includes the two quadrupolar
structures of the non-affine displacement field in Fig. 3(a) and (b). The
strain is obtained by comparing the triangulations from configurations
separated by dg. The range of the color scales is [0,0.1] for (a) and [0,0.001]
for (b).

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
0 

Se
pt

em
be

r 
20

21
. D

ow
nl

oa
de

d 
on

 1
0/

12
/2

02
1 

9:
31

:3
0 

PM
. 

View Article Online

https://doi.org/10.1039/d1sm00898f


8618 |  Soft Matter, 2021, 17, 8612–8623 This journal is © The Royal Society of Chemistry 2021

3.4 Advantage of triangle representation of displacement field

Numerous prior studies have employed D2
min to characterize the

non-affine displacement fields of amorphous materials during
applied strain;4,10,18,32,53–55 D2

min measures the deviation of the
displacement of each atom and its neighbors from a local affine
deformation.10 (See Appendix II for the definition of D2

min and
the deformation gradient tensor Gi associated with each atom i.)
In this section, we compare measurements of non-affine atomic
motion using the deformation gradient tensor Fa associated with
each Delaunay triangle a and the deformation gradient tensor Gi,
associated with each atom i, obtained by calculating D2

min (i.e.,
minimizing the local non-affine motion).

The deformation gradient tensor Fa is defined for each
triangle a, however, Gi is defined for each atom i. To make
the comparison between the two quantities, we calculate the
average triangle deformation gradient tensor associated with
each atom i:

�Fi ¼
Xni
a¼1

Aia

Ai
Fa; (12)

where ni is the number of Delaunay triangles connected to atom
i, Aia is the area of each triangle a associated with atom i, and
Ai ¼

P
a
Aia. In Fig. 8, we show that each of the four components

(xx, xy, yx, and yy) of the average triangle deformation gradient
tensor %Fi is linearly related to the corresponding component of
Gi (with a coefficient close to 1). Thus, the deformation gradient
tensor Gi associated with D2

min is an average of the triangle
deformation gradient tensor over all triangles that include
atom i as a vertex.

An advantage of using Fa is that it is the most local
deformation gradient tensor that can be defined for an atomic

system. To illustrate this feature, consider the atoms numbered
1, 2, 3, and 4 in Fig. 9(a) and (b) and the local rotation o, which
is an invariant of the deformation gradient tensor as discussed
in Appendix I. These atoms belong to triangles with both
positive and negative rotation angles (using the triangle defor-
mation gradient tensor in Fig. 9(b)), which results in a near-zero
value for the rotation when D2

min is calculated for each atom.
(See Fig. 9(a)) Similarly, atoms 1, 2, 5, and 6 possess near-zero
hydrostatic strain (Fig. 9(c)) when using D2

min to define Gi, since
these atoms belong to triangles with both positive and negative
volume changes, ehyd (Fig. 9(d)). Thus, all information

Fig. 8 Probability distributions of the components of the average triangle
deformation gradient tensor %Fi and the deformation gradient tensor Gi

associated with D2
min for atom i using the same data in Fig. 12: (a)

P( %Fixx,Gixx), (b) P( %Fixy,Gixy), (c) P( %Fiyx,Giyx), and (d) P( %Fiyy,Giyy). The probability
increases from blue to red on a log10 scale.

Fig. 9 (a)–(d) Comparison of the invariants (rotation angle o, top row, and
ehyd, bottom row) of the deformation gradient tensors Gi (left column)
associated with each atom i and Fa associated with each triangle a. The
color scale for values of o and ehyd increases linearly from blue to red.

Fig. 10 (a) Four types of perturbations applied to single triangles: rotation
(upper left), dilation (upper right), simple shear (lower left), and pure shear
(lower right). The response of the perturbations can be compared to
idealized (b) vortex, (c) dipolar, and (d) quadrupolar displacement fields.
The order metrics described in Appendix III are calculated in the annular
region between the two red circles.
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concerning local atomic deformation is stored in the
deformation gradient tensor Fa for each Delaunay triangle a;
calculating D2

min results in a loss of information.

3.5 Response to local perturbations

As shown in previous sections, quadrupolar displacement
fields occur during both the quasi-elastic segments and the
abrupt shear stress drops in systems undergoing athermal,
quasistatic simple shear. Do other types of displacement fields
occur during AQS? In this section, we apply four types of
perturbations (rotation, dilation, simple and pure shear) to
individual triangles in the system and characterize the
structure of the resulting displacement fields. (See Fig. 10(a))
After performing a given perturbation, we fix the displaced
atoms in the selected triangle and perform potential energy
minimization for the rest of the system. To ensure linear
response, we set small magnitudes for the perturbations: the
rotation angle y B 10�8 rad and the atomic displacements for
the other perturbations d B 10�8. We characterize the response
of the system by comparing the resulting displacement fields to
idealized vortex, dipolar, and quadrupolar displacement fields,
as shown in Fig. 10(b)–(d).

We consider four order metrics, each defined within the
range 0 to 1, to characterize the displacement field in response
to the local perturbations. The ‘‘circulation’’ G measures the
degree to which the displacement field rotates around a point,
the ‘‘flux’’ F describes the magnitude of the flow outward/
inward of the displacement field, and the bond-orientational
order parameters, c2, and c4,56 quantify the extent to which the
displacement fields are oriented in a single direction or in two
perpendicular directions. Mathematical expressions that
define the four order metrics are provided in Appendix III.
Displacement fields with large values of G and small values
of F, c2, and c4 are identified as vortex-like structures,
displacement fields with small values of G and large values of
F, c2 and c4 correspond to dipolar structures, and displacement
fields with small values of G, F, and c2, but large values for c4

correspond to quadrupolar structures.
As shown in Fig. 11, the local perturbations applied to the

zero-strain glasses give rise to a wide range of defects in the
displacement field. Rotation (Column (a)) and simple shear
(Column (b)) applied to single triangles give rise to vortex-like
structures (with moderate values of G). In contrast, dilations
(Column (c)) applied to single triangles induce dipole-like

Fig. 11 Probability distributions of different combinations of the order metrics, P(F,G) (top row), P(c2,G) (middle row), and P(c4,G) (bottom row), for the
non-affine displacement fields in response to four different perturbations: Column (a) rotation, Column (b) simple shear, Column (c) dilation, and Column
(d) pure shear. The data is obtained from uniformly sampling 570 unstrained glasses. The color scale from blue to red indicates increasing probability on a
linear scale.
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structures with elevated values of F, c2, and c4. Pure shear of
single triangles gives rise to quadrupolar structures with large
values of c4.

Which of the local perturbations does bulk, quasistatic
simple shear flow activate? To address this question, we focus
on the images along minimal energy paths during shear stress
drops. For each image during the minimal energy path, we
identify the disk region (with radius 5.5sAA) surrounding a
given triangle with the largest average von Mises strain.
We then calculate the four order metrics for the non-affine
displacement field between successive images in an annular
region surrounding this triangle (with inner radius 5.5sAA and
outer radius 11sAA). In Fig. 12, we show the probability
distributions, P(F,G), P(c2,G), and P(c4,G), for 232 shear stress
drops. The defects that occur during bulk, quasistatic simple
shear are similar to those generated by local pure shear in
Fig. 11(d). Thus, local pure shear deformations of single
triangles are the main defects that are activated during bulk,
quasistatic simple shear, giving rise to mainly quadrupolar
non-affine displacement fields.

4 Conclusions and future directions

In this article, we studied the non-affine atomic motion that
occurs in a 2D Lennard-Jones model of metallic glasses sub-
jected to athermal, quasistatic simple shear (AQS). The shear
stress versus strain curve consists of continuous, quasi-elastic
segments punctuated by abrupt shear stress drops, which
correspond to atomic rearrangements. Using a novel method
to define the deformation gradient tensor associated with
triangular elements from Delaunay triangularization and by
following minimal energy paths during shear stress drops, we
obtained several key results concerning the mechanical
response of amorphous materials. First, we showed that
collective structures in the non-affine displacement fields that
occur during the quasi-elastic segments are similar to those
that occur during stress drops. Quadrupolar displacement
fields, which are the most common collective structures, form

and dissolve both during the quasi-elastic segments and during
shear stress drops. Second, we emphasized that the common
procedure of using only the mechanically stable configurations
immediately before and after a stress drop to define the
non-affine displacement field is problematic since the system
can move significantly in configuration space during the stress
drop. By following minimal energy paths during the
shear stress drops, we tracked the spatio-temporal evolution of
multiple quadrupolar structures in the system using successive
configurations that differ by a small amount in stress. Third, we
compared the deformation gradient tensor Fa associated with
each triangle a to the atomic deformation gradient tensor Gi

defined by D2
min, and show that Gi is an average of Fa over adjacent

triangles. Thus, an advantage of using Fa with triangular elements
is that it is the largest grouping of atoms in 2D that captures all
information concerning the atomic motion. Lastly, by studying
the response of the system to perturbations of single triangles,
such as rotation, dilation, simple and pure shear, we demon-
strated that vortex-like, dipolar, and quadrupolar displacement
fields can be triggered. Local rotation and simple shear perturba-
tions generate vortex-like displacement fields; local dilation
generates dipolar displacement fields; and local pure shear
generates quadropolar displacement fields. Since bulk AQS
typically gives rise to quadrupolar displacement fields, these
results emphasize that bulk AQS activates mainly local pure shear
strains of triangles.

These results raise several important, open questions for
future research. First, we showed that bulk, quasistatic simple
shear gives rise to local pure shear strains of triangles, which
generate quadrupolar displacement fields. Can vortex-like or
dipolar displacement fields be generated by other bulk
deformations, such as uniaxial tension, and spatially non-
uniform deformations, such as indentation? A microscopic theory
for the non-affine displacement fields in amorphous solids
should be able to calculate the fraction of each type of triangle
strain that is activated for a given macroscopic deformation. If so,
the theory will be able to predict the resulting non-affine
displacement field for a given applied macroscopic deformation.
In addition, the methodology introduced in this article can be

Fig. 12 Probability distribution of different combinations of the order metrics, (a) P(F,G), (b) P(c2,G), and (c) P(c4,G), for the non-affine displacement
fields of all images along the minimal energy paths for 232 shear stress drops. The color scale from blue to red indicates increasing probability on a linear
scale.
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generalized to 3D using Delaunay tetrahedralization to uniquely
define the deformation gradient tensor for each tetrahedron with
atoms at its vertices. Other studies will include monitoring the
evolution of the displacement fields during applied strain at finite
strain rates and non-zero temperature, which are essential for
making comparisons to experimental studies of glasses.
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Appendix

Appendix I: Deformation of triangular
elements

Each Delaunay triangle includes three vertex atoms with a total
of six degrees of freedom. Motion of each triangle can be
decomposed into three parts: translation of its geometric
center, rotation about its geometric center, and changes in
the shape of the triangle. Let -

r 0
i and -

r n
i (i = 1, 2, 3) be the

Cartesian coordinates of the three vertex atoms of the reference
and the deformed triangular element a, respectively. The trans-

lation vector ~uc ¼
1

3

P3
i¼1
ð~rni �~r0i Þ corresponds to two degrees of

freedom. The vector -
r0

ij = -
r0

i �
-
r0

j connects two vertices i and j of
the reference triangle, while -

rn
ij = -

rn
i �

-
rn

j connects the same pair
of atoms of the deformed triangle. The deformation gradient
tensor Fa transforms the edge vector -

r0
ij into -

rn
ij. Fa can be

obtained using any two of the three edges of the triangular
element a, e.g.,

Fa ¼
xni2 xni3

yni2 yni3

" #
x0i2 x0i3

y0i2 y0i3

" #�1
; (13)

where triangle a has vertices i, 2, and 3 as shown in Fig. 13. Fa

contains the remaining four degrees of freedom. The deforma-
tion gradient tensor Fa can be decomposed into a rotation

matrix Ra and a symmetric matrix Ua: Fa = RaUa. The matrix Ra

represents a rotation with an angle of oa about the z-axis.
The local Green-Lagrangian strain tensor Ea is defined for

each triangle a as Ea = (FT
aFa � I)/2 = (UT

aUa � I)/2, where I is the
identity matrix. Ea can be decomposed into the sum of hydro-
static and deviatoric strains as follows

Ea ¼ ehyda I þ E
0
a: (14)

The hydrostatic strain,

ehyda ¼ trEa

2
¼ ðe11 þ e22Þ

2
; (15)

is closely related to the volume change of the triangle, while the

deviatoric strain tensor E
0
a is related to shear deformations at

constant volume. The von Mises strain is defined as

evma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
trðE 02a Þ

r
: (16)

Appendix II: Relation between D2
min and

triangle deformation gradient tensor

The D2
min quantity introduced by Falk and Langer10 provides a

measure for the deviations of atomic motion from local affine
deformation. Suppose we define the deviation,

D2
i ¼

Xni
j¼1
j~r n
ij � Gi~r

0
ij j2; (17)

where ni is the number of neighboring atoms surrounding a
reference atom i (e.g. using a distance cutoff set by the first
minimum in the radial distribution function). D2

i is minimized
by finding the best-fit local deformation gradient tensor,

Gi = XiYi
�1, (18)

where

Xi ¼
Xni
j¼1

~r nij ð~r 0ij ÞT (19)

and

Yi ¼
Xni
j¼1

~r 0
ij ð~r 0

ij ÞT : (20)

The rotation angle oi and other invariants, such as the von
Mises evm

i and hydrostatic ehyd
i strains associated with atom i

can be obtained from the deformation gradient tensor Gi after
minimization.

To define the triangle deformation gradient tensor, we first
perform a Delaunay triangularization for the N atoms. The
reference atom i and its neighbors j ( j = 1,2,. . .,ni) are shown
in Fig. 13. The deformation of the separation vector -

rij between
reference atom i and its neighbors can be expressed as

-
rn

ij = Fj
-
r0

ij, (21)

where Fj is the deformation gradient tensor of the triangle with
vertices i, j, and ( j + 1)0 and ( j + 1)0 = ( j + 1) mod ni. Thus, we

Fig. 13 A reference atom i and its neighboring atoms j ( j = 1,2,. . .,ni)
identified by Delaunay triangularization and indexed in counterclockwise
order. Adjacent pairs of neighbors together with the reference atom i form
the Delaunay triangles associated with atom i.
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can relate the deformation gradient tensors Gi and Fj by
substituting eqn (21) into eqn (18):

Gi ¼
Xni
j¼1

FjWj ; (22)

where the weighed matrix

Wj = -
r0

ij(
-
r0

ij)
TYi
�1. (23)

Appendix III: Order metrics for
non-affine displacement field

In Section 3.5, we described the response of the system to local
perturbations of individual triangles. In particular, we calcu-
lated several order metrics that characterize the displacement
field in an annular region surrounding the perturbed triangle
as shown in Fig. 10(b)–(d). We set the inner and outer radii to
be 5.5sAA and 11sAA, respectively. Changing the values of the
radii does not alter the key features of the order metrics. In this
Appendix, we provide the mathematical expressions that define
the four order metrics discussed in the main text.

To calculate the average ‘‘circulation’’ of the displacement
field within the annular region, we define

G ¼ 1

C

Xna
j¼1

r̂cjxvjy � r̂cjyvjx

�����
�����; (24)

where na is the number of atoms located within the annular
region, r̂cj is the unit vector pointing from the center of the
perturbed triangle to the center of atom j, -

vj is the displacement

vector of atom j, and C ¼
Pna
j¼1
j~vj j. We define the average ‘‘flux’’ of

the displacement vectors through the annular region as

F ¼ 1

C

Xna
j¼1

r̂cj �~vj

�����
�����: (25)

To characterize dipolar- and quadrupolar-like displacement
fields, we measure the weighted local bond-orientational order
parameters,56

ck ¼
Xna
j¼1

sj

C
eikyj

�����
�����; (26)

where k = 2 for dipolar and 4 for quadrupolar structures, yj is
the angle between -

vj and the x-axis, and sj = |r̂cj�
-
vj|. For idealized

(a) vortex, (b) point charge, (c) dipolar, and (d) quadrupolar
fields, these definitions give the following values (G,F,c2,c4):
(a) (1,0,0,0), (b) (0,1,0,0), (c) (0,0.7,0.7,0.8), and (d) (0,0,0,0.8).
The idealized quadrupolar field is obtained from a single
Eshelby circular inclusion with radius 4sAA, Poisson’s ratio
n = 0.343, and 0.09 for the coefficient of the traceless
eigenstrain1 and the idealized dipolar field is obtained by
weighting this quadrupolar field by cos2 z, where z is the angle
between the quadrupolar field and one of the principal direc-
tions of the eigenstrain tensor of the Eshelby inclusion.
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