
This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 9751--9761 | 9751

Cite this: SoftMatter, 2019,

15, 9751

Jammed packings of 3D superellipsoids with
tunable packing fraction, coordination number,
and ordering

Ye Yuan,ab Kyle VanderWerf, c Mark D. Shattuck d and Corey S. O’Hern *bcef

We carry out numerical studies of static packings of frictionless superellipsoidal particles in three spatial

dimensions. We consider more than 200 different particle shapes by varying the three shape parameters

that define superellipsoids. We characterize the structural and mechanical properties of both disordered

and ordered packings using two packing-generation protocols. We perform athermal quasi-static

compression simulations starting from either random, dilute configurations (Protocol 1) or thermalized,

dense configurations (Protocol 2), which allows us to tune the orientational order of the packings. In

general, we find that superellipsoid packings are hypostatic, with coordination number zJ o ziso, where

ziso = 2df and df = 5 or 6 depending on whether the particles are axi-symmetric or not. Over the full

range of orientational order, we find that the number of quartic modes of the dynamical matrix for the

packings always matches the number of missing contacts relative to the isostatic value. This result

suggests that there are no mechanically redundant contacts for ordered, yet hypostatic packings of

superellipsoidal particles. Additionally, we find that the packing fraction at jamming onset for disordered

packings of superellipsoidal depends on at least two particle shape parameters, e.g. the asphericity A

and reduced aspect ratio b of the particles.

1 Introduction

Athermal particulate materials, such as granular media, foams, and
emulsion droplets, typically jam, or become solid-like with a non-
zero static shear modulus when they are compressed to sufficiently
large packing fractions.1–4 Unwanted jamming occurs in many
industrial processes, such as clogging in hopper flows,5 and
controlled jamming and unjamming has been used in robotics
to grip soft, sharp, or fragile objects.6 Further, unjamming in
geological systems, such as landslides and earthquakes, causes
significant financial and human loss.

Many prior studies have focused on jamming in model systems
composed of frictionless, spherical particles. Disordered packings
of frictionless, monodisperse spherical particles are isostatic at

jamming onset with zJ = ziso contacts per particle, where ziso =
2df = 6 and df = 3 is the number of translational degrees of
freedom for spheres, and with packing fraction at jamming
onset fJ E 0.64.1,2,7,8 Previous work has characterized the critical
scaling of the structural and mechanical properties1,9–11 and the
anomalous vibrational density of states12,13 of jammed packings
of spherical particles.4

However, most athermal, particulate systems in industrial
processes and in nature are composed of highly non-spherical
particles.14,15 In general, disordered jammed packings of non-
spherical particles are hypostatic with coordination number
zJ o ziso, where ziso = 10 or 12 for axisymmetric and non-
axisymmetric particles, respectively.16–19 Thus, disordered jammed
packings can possess a range of coordination numbers, 6 r zJ r 12,
and packing fractions at jamming onset that depend on the
shape of the constituent particles. In two spatial dimensions
(2D), we showed recently that disordered packings generated
via athermal, quasistatic compression for a wide variety of non-
spherical shapes are mechanically stable, despite the fact that
zJ o ziso.20,21 The mechanical stability of hypostatic packings with
N nonspherical particles in d spatial dimensions can be assessed
by calculating the eigenvalue spectrum of the dynamical matrix
for each packing. Hypostatic packings are mechanically stable
because they possess Ndf � d positive eigenvalues (in periodic
boundary conditions), which matches the number of nontrivial
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degrees of freedom in the system. Some of the eigenvalues
correspond to ‘‘quadratic’’ modes and the others correspond to
‘‘quartic’’ modes. For a given quadratic mode, when the packing
is perturbed by displacing the particles by an amplitude d along
this eigenmode of the dynamical matrix, the total potential energy
U increases by d2. In contrast, at the onset of jamming where
U - 0, U increases by d4 when the system is perturbed along a
quartic mode.20,22 We find that the number of quadratic modes is
N2 = NzJ/2 and the number of missing contacts below the isostatic
value, Ndf � d + 1, matches the number of quartic modes of the
dynamical matrix. This result indicates that all of the degrees of
freedom in the hypostatic packings are indeed constrained. From
the perspective of the potential energy landscape, a mechanically
stable hypostatic packing corresponds to a local minimum, but
near the minimum, the directions along the quartic modes are
much flatter than along the quadratic modes. Moreover, we have
shown in prior work that hypostatic packings of ellipses and
ellipsoids possess nonzero shear moduli, but the scaling of the
shear moduli with pressure is different from that observed for
sphere packings.20,23

Given that jammed packings of non-spherical particles can
occur over a wide range of coordination numbers and packing
fractions, is it possible to a priori determine whether a system is
jammed if we are only given its z and f? For disordered
packings of monodisperse spheres, we know that if f 4 0.64
and z 4 6, the packing is jammed. For disordered packings of
convex-shaped particles in 2D, we found that the packing
fraction at jamming onset can be collapsed approximately onto
a master curve that depends only on the shape parameter
A = p2/4pa, where p is the perimeter and a is the area of the
particle.21 In 2D, fJ E 0.84 for A = 1, fJ increases with A,
reaching a peak near A E 1.1, and then decreases continuously
with further increases in A. Results for fJ have also been
reported for packings of nonspherical particles in 3D, but
separately for each family of shapes, e.g., ellipsoids,17

spherocylinders,18,24,25 and spheropolyhedra.26 Here, we will
address the question of whether there is a general relationship
between the packing fraction at jamming onset and one or
more particle shape parameters in packings of non-spherical
particles in 3D.

Further, few studies have attempted to connect the coordination
number to mechanical stability for ordered packings of non-
spherical particles,27,28 despite the fact that packings of mono-
disperse particles that deviate by less than 20% from perfect
sphericity can possess significant translational and orienta-
tional order. In particular, does the relationship between the
number of missing contacts below the isostatic value and
number of quartic modes hold for ordered or partially ordered
packings of non-spherical particles? One might expect that
some of the ‘‘extra’’ contacts that occur in ordered packings
may be mechanically redundant,29 and therefore will not con-
tribute to the packing’s stability, resulting in a mismatch
between the number of missing contacts and the number of
quartic modes.

We investigate these questions by generating static packings
of monodisperse, frictionless, superellipsoidal-shaped particles

in 3D using numerical simulations.30–33 We consider more than
200 different particle shapes by changing the shape parameters
that define superellipsoids. For each packing, we determine fJ,
zJ, the orientational order, and the eigenvalues and eigenmodes
of the dynamical matrix. We carry out two packing-generation
protocols. In Protocol 1, we jam the packing via athermal
quasistatic compression,1,22,34,35 starting from a random, dilute
initial configuration of particles. In Protocol 2, we thermalize an
unjammed configuration at an intermediate packing fraction
before applying the same athermal quasistatic compression
protocol (Protocol 1). We find that Protocol 1 generates globally
disordered packings with a narrow distribution of jammed
packing fractions and coordination numbers. Protocol 2, on
the other hand, is able to generate packings of superellipsoidal
particles with a wide range of orientational order.

We describe several key results. First, for disordered pack-
ings of superellipsoidal particles in 3D generated via Protocol 1,
we show that the jammed packing fraction depends strongly on
at least two shape parameters, instead of only one as we found
for 2D packings of noncircular particles.21 In addition, we find
that zJ, even in ordered packings of superellipsoids, determines
mechanical stability. In particular, the number of quartic
eigenmodes of the dynamical matrix matches the number of
missing contacts relative to the isostatic value Niso

c in ordered
superellipsoid packings, as well as in disordered packings.

The article is divided into several sections. In Section 2, we
review the definition of superellipsoids, describe the two packing-
generation protocols we implement, and define the orientational
order parameters we use to measure the degree of order in jammed
packings. In Section 3, we present our key results. Finally, in
Section 4, we summarize our results and discuss directions for
future research. We also include three Appendices. In Appendix A,
we show that we widely sample the two shape parameters that
characterize the shape of superellipsoids. In Appendix B, we
examine the local orientational order in superellipsoid packings.
Finally, in Appendix C, we show the correlation between the average
curvature of the particles at interparticle contacts and the coordina-
tion number for packings of superellipsoids.

2 Methods

In this section, we begin by defining the shape parameters for
superellipsoids, and explain the wide variation in particle shape
that is possible by tuning these parameters. Next, we describe
our two protocols, the athermal Protocol 1, and the thermal
Protocol 2, which we use to generate disordered and ordered
jammed packings of these shapes, respectively. We then discuss
calculations of the eigenvalues and eigenmodes of the dynamical
matrix for superellipsoid packings to measure their mechanical
response. Finally, we define the two order parameters that we
use to quantify the orientational order in the packings.

2.1 Model of superellipsoidal particles

The surface of a superellipsoidal particle located at the origin is
defined by
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|x/a|2p + |y/b|2p + |z/c|2p = 1, (1)

where a, b, and c (a r b r c) are the lengths of the semi-major
axes, and p is the deformation parameter.19,36 For superellip-
soids, there are three independent parameters that control the
particle shape, i.e., p and the two aspect ratios w1 = a/b and
w2 = c/b. If a = b, there is only one relevant aspect ratio w = c/a
and if b = c, w = a/c. Note that the particle shape reduces to a
superball when a = b = c. By tuning p, we can vary the super-
ellipsoid shape from ellipsoidal ( p = 1) to octahedral ( p o 1)
and cuboidal ( p 4 1). We focus our studies on five specific
p-values: p = 0.75, 0.85, 1, 1.5, and 2.

Instead of p and the aspect ratios, w1 and w2, the shape of
superellipsoids can also be characterized by p, the reduced
aspect ratio b = ac/b2, and asphericity,

A = 1 � (4p)1/3(3Vp)2/3/Ap, (2)

where Vp and Ap give the particle volume and surface area.37,38

The shape parameter b allows us to distinguish ‘‘flattened’’
(bo 1) versus ‘‘elongated’’ (b4 1) shapes. The shape with b = 1
is termed a self-dual ellipsoid, which shows anomalous properties
in disordered17 and dense39 packings. The asphericity satisfies
0 o A o 1, and A = 0 for spheres. For the p values studied, the
superellipsoidal particle shape in the b–A plane is roughly
bounded by the values for prolate bmax(A) and oblate ellipsoids
bmin(A) as shown in Fig. 12 in Appendix A. We focus on A-values
from 0 to B0.35 and sample bmin(A) o b o bmax(A).

We consider pairwise, purely repulsive interactions between
superellipsoids using the Perram and Wertheim formula-
tion.17,22,36,40,41 For each pair of overlapping superellipsoids i
and j, we calculate the volume scaling factor Zij that brings the
two superellipsoids to exact tangency. The potential energy for
particles i and j is then defined by Uij = ezij

2/2, where e is the
characteristic energy scale, zij = Zij

2 � 1, and Zij r 1. The total
potential energy is given by U ¼

P
i4 j

Uij . The repulsive force on

particle i from j, ~fij ¼ ~riU, is given by
-

fij = 2ezijZijn̂ij/(
-
rij�n̂ij) (3)

where n̂ij is the unit normal of the tangent plane between just-
touching superellipsoids pointing toward i and -

rij is the center-
to-center vector pointing from superellipsoid j to i. The torque
~tij on particle i from j is calculated using

~tij =
-

lij �
-

fi,j, (4)

where
-

lij is the vector from the center of particle i to the point of
adjacency between superellipsoids i and j. See Fig. 1 for an
illustration of n̂ij,

-
rij, and

-

lij for two contacting superellipsoids.
We will measure lengths, energies, and forces in terms of a, e,
and e/a.

2.2 Packing-generation protocols

We generate jammed packings of N = 400 frictionless, mono-
disperse superellipsoidal particles in cubic simulation cells
with periodic boundary conditions using two compression
protocols: (1) an athermal protocol and (2) a thermal protocol.

For Protocol 1, we first initialize an overlap-free, dilute configuration
of particles with random positions and orientations. We then
compress the configuration in small increments of packing fraction,
Df = 10�3, minimizing the total potential energy U using the L-BFGS
method42 after each compression step. We terminate the energy
minimization procedure at each compression step when the inter-
particle overlaps are removed, achieving U/N o Utol, where Utol =
10�10. We stop compressing the system when U/N o Utol and
concurrently the average normalized force on a particle is below a

small threshold,
P
j

~fij

�����
�����

* +,
fij
� �

oD, where D = 10�4. We then

measure the packing fraction fJ, coordination number zJ, and other
quantities of the first jammed packing with U/N 4 Utol that is closest
to Utol. We study the number of contacts in static packings of
nonspherical particles with force and torque balance on all non-
rattler particles. We identify rattler particles as those with less than 4
interparticle contacts. Contacts are defined as nonzero overlaps
between the two particles. The coordination number is defined as
zJ = 2Nc/(N� Nr), where Nc is the total number of contacts (excluding
contacts from rattler particles) and Nr is the number of rattler
particles. We find that the results presented here do not depend
on the thresholds D and Utol. Examples of nine static packings of
superellipsoids with different shapes generated via Protocol 1 are
shown in Fig. 2.

For Protocol 2, we first thermalize unjammed configurations
at intermediate packing fractions fi B 0.55, between the freezing
and melting packing fractions for hard superellipsoids,36,43 using
Monte Carlo methods that do not allow particle overlaps for Ns

steps. We then input these configurations into the compression
and energy minimization procedure described in Protocol 1. By
varying Ns and fi, we can obtain jammed packings of super-
ellipsoids with tunable fJ, coordination number zJ, and degree
of orientational order.

To calculate average quantities for fJ, zJ, and other quantities
at jamming onset, we average over 5 to 10 independent initial
conditions. We validated our methods for generating jammed
packings of superellipsoids by comparing our results for fJ from
Protocol 1 to those from recent studies of packings of spheroids
and superballs.17,19 (See Fig. 3.)

Fig. 1 Illustration of the simulation model for two contacting super-
ellipsoids i and j. n̂ij is the unit normal to the tangent plane at the point
of contact (pointing toward particle i), r

-
ij is the center-to-center vector

between particles i and j, and l
-

ij is the vector from the center of particle i to
the point of contact between particles i and j.

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

19
. D

ow
nl

oa
de

d 
by

 C
ity

 C
ol

le
ge

 o
f 

N
ew

 Y
or

k 
on

 5
/3

1/
20

20
 1

0:
34

:1
1 

PM
. 

View Article Online

https://doi.org/10.1039/c9sm01932d


9754 | Soft Matter, 2019, 15, 9751--9761 This journal is©The Royal Society of Chemistry 2019

2.3 Dynamical matrix

The dynamical matrix, which provides all possible second
derivatives of the total potential energy with respect to the
rotational and translational degrees of freedom of the system,
determines the linear mechanical response of jammed particle
packings. We define the dynamical matrix as

Mkl = q2U/qxkqxl, (5)

where ~x = {x1,y1,z1,ay1,af1,ac1,. . .xN,yN,zN,ayN,afN,acN}, (xi,yi,zi)
is the location of the center of particle i, and (yi,fi,ci) are the
rotation angles about the x-, y-, and z-axes used to define the
orientation of particle i. Thus, the dimension of the dynamical

matrix is 6N� 6N. For jammed superellipsoid packings (in cubic
simulation cells with periodic boundary conditions), the dynamical
matrix possesses 6N0 � 3 nonzero eigenvalues li (with corres-
ponding unit eigenvectors êi), where N0 = N � Nr and Nr is the
number of rattler particles with unconstrained translational or
rotational degrees of freedom.

To determine Mkl, we calculated the first-order derivatives of
the dynamical matrix, qU/qxk analytically, and calculated all of
the second-order derivatives numerically. We find that the
eigenvalues of the dynamical matrix do not depend sensitively
on the numerical derivatives for displacements o10�8.

2.4 Order parameters

In packings of non-spherical particles, one can measure the
degree of order in the translational (i.e. positions of the particle
centers) and rotational (i.e. orientations of the particles)
degrees of freedom. In the systems we study, when the particle
orientations are ordered, the particle positions also contain
significant order. Thus, in these studies, we will focus on
quantifying the orientational order.

We measure the global nematic S2
24,44 and cubatic C4 order

parameters.45 S2 is defined as the largest eigenvalue of the 3� 3
matrix:

Sab ¼
3

2
ŝai ŝbj
� �

� dab
2

(6)

where dab is the Kronecker delta, a, b = x, y, and z, ŝai is the
a-compoent of the unit vector that characterizes the orientation
of particle i and h�i indicates an average over all pairs of
particles i and j. ŝi is chosen as the shortest (longest) axis of
the particle when b o 1 (b 4 1). With this definition of ŝi, S2

can capture stacking order that can occur in packings of flat
shapes, as well as nematic order that can occur in packings of
elongated shapes. S2 = 0 for systems without orientational order
and 1 for systems with complete particle alignment.

The cubatic order parameter45 C4 is obtained by first calcu-
lating the fourth-order Legendre polynomial,

P4 t̂; ûið Þ ¼ 1

8
35½t̂ � ûi�4 � 30½t̂ � ûi�2 þ 3
� �

; (7)

where t̂ is the unit vector aligned with one of the 3N orienta-
tions of the semi-major axes of each of the particles and ûi is a
unit vector aligned with one of the three orientations of the
semi-major axes for particle i. For each particle i in a given
jammed packing, we select the ûi that maximizes P4(t̂,ûi) for a
given t̂. We then average Pmax

4 (t̂) over all particles for a given t̂
and define C4 as the maximum over all 3N orientations t̂. For
C4 B 1, packings possess large cubatic order, which can occur
in packings of cube-like particles with p 4 1. In Appendix B, we
show results for the local nematic and cubatic order in pack-
ings of superellipsoids.

3 Results and discussion

Our results are divided into two subsections. In Section 3.1, we
present our results for disordered packings of superellipsoids

Fig. 3 (a) The packing fraction at jamming onset fJ for packings of
N = 400 prolate (a = b) or oblate (b = c) spheroids generated using
Protocol 1 versus the aspect ratio w (open squares), as well fJ for packings
of spheroids from recent studies by Donev, et al.17 (open circles). (b) fJ for
packings of superballs (a = b = c) generated using Protocol 1 versus the
deformation parameter p, as well as fJ for packings of superballs from
Jiao, et al.19

Fig. 2 Examples of nine static packings of superellipsoid particles with
different shapes. The particle shape is characterized by (p,w1,w2): (a) oblate
ellipsoid (1,0.3,1), (b) prolate ellipsoid (1,1,3), (c) self-dual ellipsoid
(1,0.8,1.25), (d) general ellipsoid (1,0.6,2.36), (e) superball (2,1,1), and four
superellipsoids with (f) (0.75,0.4,1), (g) (0.85,0.7,2), (h) (1.5,0.5,1.5), and
(i) (2,1,1.5).
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generated via Protocol 1. We show the global nematic and
cubatic order parameters for packings containing a wide variety
of superellipsoidal shapes. We find that the packing fraction at
jamming onset for disordered packings of superellipsoids
depends strongly on two shape parameters, A and b. In Section
3.2, we show that we can tune the packing fraction and coordi-
nation number at jamming onset by increasing the orientational
order of the packings generated via Protocol 2. We also show
that, even for ordered packings, the number of quartic modes of
the dynamical matrix is equal to the isostatic number of contacts
minus the number of contacts in the packing. Thus, we find a
direct link between the coordination number and mechanical
properties even for ordered packings of superellipsoids.

3.1 Disordered packings of superellipsoids

In this section, we focus on the structural propreties of super-
ellipsoid packings generated via Protocol 1. In Fig. 4(a), we
show a scatter plot of the global nematic S2 and cubatic C4

order parameters for all jammed packings generated using
Protocol 1. We find that many of the packings are disordered

with S2 and C4 � 1
� ffiffiffiffi

N
p
� 0:07. However, as demonstrated in

the inset to Fig. 4(a), S2 increases as b decreases below 1 and the
particle shape flattens. For more elongated shapes with b 4 1,
S2 is roughly independent of b. We also find that the cubatic
order increases as the particles become more cube-shaped with
p 4 1, even though the packings were generated using the
athermal protocol. In Fig. 4(b) and (c), we show example
packings of flattened and cube-like superellipsoids generated
via Protocol 1 with elevated values of S2 and C4. In Fig. 4(b), we
show the local nematic order of the particles for a packing of
flattened superellipsoids with p = 0.75 and w = 0.3. In Fig. 4(c),
we show the local cubatic order of the particles for a packing of
superballs with p = 2. These packings possess local nematic and
cubatic order. (See Appendix B.)

In Fig. 5, we show the packing fraction at jamming onset fJ

as a function of the asphericity A for a variety of superellipsoid
shapes. The relation between fJ and A is similar to that for
packings of noncircular particles in 2D.21 fJ starts at a relatively
low value for spherical particles (i.e. random close packing for
monodisperse spheres with fJ(0) E 0.64), then grows with
increasing asphericity, reaching a peak fJ B 0.70–0.74 near
A B 0.05, and then begins decreasing, falling below fJ(0) for
A 4 0.1. We also note that the data for f(A) does not collapse
as well onto a single curve in 3D, compared to the collapse of
fJ(A) for packings of 2D noncircular particles.21

In Fig. 6, we show the coordination number at jamming
onset zJ versus the asphericity A for (a) spheroids with an axis
of symmetry and ziso = 10 and for (b) all other particle shapes
with ziso = 12. zJ = 6 for isostatic packings of spherical particles
in the limit A - 0. As found previously, zJ for packings
of nonspherical particles does not jump discontinuously from
6 to ziso when A increases above zero. Instead, zJ increases
continuously with A. zJ for some of the particle shapes reaches
ziso for A o 0.35, e.g. oblate, prolate, self-dual, and general
elliposoids, but zJ for others, such as superellipsoids with
p = 0.75, 0.85, 1.5, and 2.0 do not. Note that ziso is smaller for

Fig. 4 (a) A scatter plot of the global nematic S2 and cubatic C4 order
parameters for packings of superellipsoids generated via Protocol 1. The
particle shapes include oblate ellipsoids (filled squares), prolate ellipsoids
(filled circles), self-dual ellipsoids (filled upward triangles), general ellip-
soids (downward open triangles), superballs (open diamonds), nearly
spherical particles with p B 1 and w B 1 (asterisks), and p = 0.75 (squares
with lines), 0.85 (circles with lines), 1.5 (upward triangles with lines), and
2.0 (pentagons with lines). The vertical (horizontal) arrow indicates pack-
ings with increasingly flatter (cube-like) shapes. The inset shows a scatter
plot of S2 versus the normalized aspect ratio b for the same data set.
(b) Example packing of superellipsoids with p = 0.75 and w = 0.3 and global
nematic order S2 = 0.11. (c) Example packing of superballs with p = 2 and
global cubatic order C4 = 0.37. We show the (b) local nematic and (c) local
cubatic order by coloring the particles with increasing local order from
green to red.

Fig. 5 The packing fraction at jamming onset fJ versus the asphericity A

for packings of the same shapes described in Fig. 4 generated via
Protocol 1. The vertical dashed line marks the characteristic Ac B 0.05
of the peak in the fJ(A).
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spheroids, compared to ziso for other non-axisymmetric particle
shapes, and thus the maximum packing fraction for spheroids
is smaller than that for the other shapes we studied. We
correlate values of zJ o ziso for superellipsoids with the surface
curvature at interparticle contacts in Appendix C.

The packing fraction at jamming onset fJ for packings of super-
ellipsoids does not completely collapse when plotted versus a single
shape parameter, e.g. the asphericity A. (See Fig. 5.) This result
suggests thatfJ for packings of nonspherical particles in 3D depends
on two or more shape parameters. In Fig. 7(a), we show fJ versus the
reduced aspect ratio b for several values of the asphericity A = 0.1,
0.15, 0.2, and 0.25, excluding cube-like superellipsoids with p 4 1.
All of the curves fJ(b) are concave down for the different values of A.
In Fig. 7(b), we show a contour plot of fJ as a function of both b and
A. We find that at small A, the largest fJ, f

max
J , occurs near b = 1,

however, fmax
J shifts to b 4 1 when A 4 0.2. Thus, fJ depends on

both shape parameters A and b.

3.2 Tunable hypostaticity

In this section, we show that we can increase the nematic or
cubatic order in packings of superellipsoids using Protocol 2 to
generate the packings. We compare fJ and zJ at jamming onset
for packings generated via Protocols 1 and 2. We focus on
packings of superballs with p = 1.25 and 1.5 and packings of
oblate ellipsoids with w = 0.3.

In Fig. 8(a), we show the global nematic S2 and cubatic C4

order parameters versus the packing fraction at jamming onset
fJ for single packings of oblate ellipsoids (with w = 0.3) and
superballs (with p = 1.25 and 1.5) generated via Protocol 2. We
also compare these results to those for packings of the same
shapes, but generated using Protocol 1. Example packings are
displayed in Fig. 8(b). We find that S2 and C4 o 0.1–0.2 for
packings generated via Protocol 1. However, S2 and C4 can become
larger than 0.7 for packings generated using Protocol 2. For all
shapes studied, fJ increases with increasing orientational order.

In Fig. 9(a), we show the eigenvalue spectrum of the dynamical
matrix (eqn (5)) sorted from smallest to largest for packings of
6 different types of superellipsoids. As found in previous studies of
packings of ellipsoids, the eigenvalue spectrum has three distinct
regimes.22 For a given eigenvector êi, the contribution of the
translational degrees of freedom is defined by

Ti ¼
XN
j¼1

X
g

êi½ �jg2; (8)

where g is summed over the three translational degrees of freedom
x, y, and z for particles j in êi and Ti + Ri = 1. In Fig. 9(b), we find
that in regime 3 (i 4 3N), the eigenmodes are largely translational

Fig. 7 (a) Packing fraction at jamming onset fJ versus the reduced aspect
ratio b for packings of superellipsoids generated using Protocol 1. The plot
includes ellipsoids with four values of the asphericity A = 0.1, 0.15, 0.2, and
0.25 and two families of superellipsoids with p = 0.75 (se0.75) and 0.85
(se0.85). (b) Contour plot of fJ as a function of A and b. The horizontal
dashed line indicates b = 1.

Fig. 6 The coordination number at jamming onset zJ versus asphericity
A for packings generated via Protocol 1 for (a) spheroids and (b) all other
shapes. The symbols are the same as those used in Fig. 4. The horizontal
dashed lines in (a) and (b) indicate ziso = 10 and 12 for the respective
families of shapes. The vertical dotted line marks the threshold in
A B 0.05 above which zJ(A) reaches a plateau for spheroids.
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(Ti B 1). The Ti values in regime 2 for nearly spherical shapes (i.e.
superballs with p = 1.02 and self-dual ellipsoids w1 = 0.98) are small,
indicating that the modes are largely rotational. As the asphericity
increases, regimes 2 and 3 merge and Ti increases. Quartic modes
always correspond to the lowest frequency modes, and the transla-
tional content of these eigenmodes is small for nearly spherical
particle shapes, and increases with asphericity.

When the system is perturbed along a quartic eigenmode êi in
regime 1, the change in the total potential energy DU between
the unperturbed and pertrubed packings first increases
quadratically with the perturbation amplitude d, but then
scales as d4 beyond a characteristic amplitude d* that scales
to zero with decreasing pressure. (See the left of Fig. 10(a)). We
found in previous studies of nonspherical particles that the
number of quartic modes Nq matches the deviation in the
number of contacts at jamming onset from the isostatic value,
i.e. Nc = Niso

c � Nq, where Niso
c = df(N � Nr) � 2. We show this

result for packings of superellipsoids generated via Protocol 1

in Fig. 10(b). This result emphasizes that even though
Nc o N iso

c , disordered packings of superellipsoids generated
via Protocol 1 are mechanically stable.

Is the relationship between the number of contacts and
number of quartic modes the same for packings of nonspherical
particles with significant orientational order? For example, in
ordered systems, it is possible that some of the Nc contacts are
redundant and therefore do not provide independent constraints to
block the degrees of freedom in the packings. In Fig. 11(a), we show
the zJ for packings of three types of superellipsoids generated via
Protocol 2 that possess significant global nematic and cubatic order
(cf. Fig. 4(a)). The coordination number in these systems (zJ - 10)
is much larger than that for packings generated using Protocol 1.

In Fig. 11(b), we show the eigenvalue spectrum of the
dynamical matrix for three packings of superballs with p = 1.5
generated using Protocol 2. As shown previously, the spectrum
includes three regimes with a regime of quartic eigenmodes at
the lowest eigenvalues. Further, the crossover in behavior from
DU B d2 to Bd4 occurs at a similar value of d* that scales to
zero with decreasing pressure. (See the right panel of Fig. 10(a)).
In the inset of Fig. 11(b), we show the number of contacts Nc

versus the number of quartic modes Nq for all of the packings
generated using Protocol 2. We find that even with significant

Fig. 9 (a) Sorted eigenvalues li of the dynamical matrix for packings of
several shapes, including three types of superballs (p = 1.02, 1.15, and 1.5)
and three types of self-dual ellipsoids (w1 = 0.98, 0.9, and 0.6). Three
distinct regimes of the spectrum are marked 1, 2, and 3. (b) The contribu-
tion of the translational degrees of freedom Ti to each eigenvector êi for
the same packings as in (a).

Fig. 8 (a) Global nematic S2 (left axis) and cubatic C4 (right axis) order
parameters for single packings of superballs (p = 1.25 and 1.5) and oblate
ellipsoids (w = 0.3) generated using Protocol 2 are plotted versus fJ. The
average values of S2 and C4 for an ensemble of packings with the same particle
shape, but generated using Protocol 1, are shown using corresponding
symbols with crosses on the inside. The filled symbols represent the four
packings shown in panel (b). (b) [top] Example packings generated via (left)
Protocol 1 and (right) 2 for oblate ellipsoids with w = 0.3 and [bottom] example
packings generated via (left) Protocol 1 and (right) 2 for superballs with p = 1.5.
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orientational order, the number of quartic modes matches the
deviation in the number of contacts from the isostatic value.
Thus, we find that there are no redundant contacts for hypo-
static packings of superellipsoids with zJ o ziso, and zJ deter-
mines their mechanical stability. In other words, the number of
quadratic modes is consistently given by the number of existing
contacts Nc, and the other degrees of freedom are constrained
by the quartic modes.

4 Conclusions and future directions

In this article, we carried out computational studies of jammed
packings of frictionless superellipsoids for more than 200 different
particles shapes in three spatial dimensions. We implemented two
protocols to generate static packings: Protocol 1, which uses
athermal quasistatic compression, and Protocol 2, which includes
thermal fluctuations and compression. Protocol 1 typically gener-
ates packings with small values of the global nematic and cubatic
orientational order parameters, lower packing fraction fJ and
coordination number zJ at jamming onset. In contrast, Protocol 2
allows us to tune the orientational order (as well as fJ and zJ) in
packings of superellipsoids over a much wider range compared to
those generated via Protocol 1.

We found several important results. Prior studies of dis-
ordered jammed packings of 2D nonspherical particles have
shown that the packing fraction at jamming onset fJ for a

wide variety of shapes can be collapsed onto a masterlike curve
with respect to a single shape parameter-the asphericity.21 For
disordered packings of superellipsoids in 3D, we find that two
shape parameters, e.g. the asphericity A and reduced aspect
ratio b, are required to determine fJ. Additionally, prior studies
have found that packings of nonspherical particles are hypo-
static with zJ o ziso, and the number of missing contacts below
the isostatic value matches the number of quartic eigenmodes
of the dynamical matrix.20–22 Most of these prior studies have
considered disordered packings of nonspherical particles with
small values for global measures of orientational order. We find
that the number of contacts Nc = Niso

c � Nq, where Niso
c is the

number of contacts for an isostatic system and Nq is the
number of quartic modes, for both disordered and ordered
packings of nonspherical particles. The lack of redundant
contacts implies that the number of quadratic modes is con-
sistently given by the number of contacts Nc of the packing, and
the other degrees of freedom are constrained by the quartic
modes. If there were redundant contacts, we would observe
packings with Nc 4 Niso

c � Nq.
Our work opens up several new avenues of future research.

First, in this work, we were able to generate packings of

Fig. 11 (a) The coordination number at jamming onset zJ versus the
packing fraction at jamming onset fJ for the packings of superellipsoidal
shapes considered in Fig. 8 generated via Protocol 2. Results for packings
generated using Protocol 1 are represented by crosses. (b) Eigenvalues li

of the dynamical matrix sorted from smallest to largest for the three
packings of superballs with p = 1.5 marked by the solid symbols in (a).
The packings possess zJ = 8.205, 9.08, and 9.785. The inset shows Nc

versus Niso
c � Nq for all packings of superellipsoids generated via Protocol

2. The dashed line has unit slope and passes through the origin.

Fig. 10 (a) Change in the potential energy per particle DU/N between the
perturbed and unperturbed packing for perturbations with amplitude d along
several eigenmodes of the dynamical matrix for two packings of superballs with
p = 1.5 and zJ = 8.205 (left) and 9.08 (right). DU B d4 at large d for perturbations
along the quartic eigenmodes (solid lines), whereas DU B d2 for perturbations
along all other modes (dashed lines). (b) The number of contacts Nc versus
6(N � Nr) � Nq � 2, where Nr is the number of rattler particles and Nq is the
number of quartic eigenmodes for all the configurations in Fig. 5 and 6. The
dashed line has unit slope and passes through the origin.
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superellipsoids with tunable orientational order, fJ, and zJ.
However, we only considered packings with zJ o ziso. It will be
interesting to generate packings of nonspherical particles with
even more order, where zJ 4 ziso. In this case, do quartic modes
still occur and if so, what determines their number? Another
future research direction involves packings of frictional non-
spherical particles.46–50 Packings of frictional spherical parti-
cles can occur with coordination numbers that satisfy df + 1 o
zJ o 2df, where df = d for spherical particles.51,52 Prior studies
have shown that packings of frictional ellipsoids can possess
zJ E d + 1 = 4.46 Do these packings possess quartic modes, and
if so, how many? It is clear that much more work is needed to
understand the number of contacts that is required to deter-
mine the mechanical stability of packings of frictional, non-
spherical particles.

Conflicts of interest
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Appendix A: variation of the shape
parameters b and A

In this Appendix, we show the range of reduced aspect ratio b
and asphericity A that can be achieved for superellipsoidal
particle shapes. For oblate and prolate ellipsoids, the aspheri-
city A(b) can be written explcity. For oblate ellipsoids, we find

AðbÞ ¼ 2b2=3

1þ b2

sin g
ln

1þ sin g
cos g

	 
 (9)

where g = cos�1b. For prolate ellipsoids, A(b) can be expressed as

AðbÞ ¼ 2b2=3

1þ ba
sin a

; (10)

where a = cos�1b�1. In Fig. 12, we plot the relations between b and
A for oblate and prolate ellipsoids, as well as b(A) for super-
ellipsoids with p = 2. We find that these curves serve as upper and
lower bounds for the shape parameters of all other shapes that we
study for A o 0.35.

Appendix B: local nematic and cubatic
order parameters

In the main text, for example in Fig. 4(a) and 8(a), we showed
results for the global nematic S2 and cubatic C4 order para-
meters for packings of superellipsoids. In these figures, we also
show example packings from the simulations with the particles
colored according to the value of the local nematic and cubatic
order parameters. The local nematic order parameter Sloc

2 is
defined analogously to eqn (6) as the largest eigenvalue of the
3 � 3 matrix:

Sloc
ab ¼

3

2
ŝai � ŝbj
� �

j
� dab

2
; (11)

where h�ij averages over particles j that overlap particle i.
To define the local cubatic order parameter Cloc

4 for particle
i, we first calculate

P4 ûi; ûj
� �

¼ 1

8
35 ûj � ûi
� �4 � 30 ûj � ûi

� �2 þ 3
 �

; (12)

where ûj is a unit vector aligned with one of the three orienta-
tions of the semi-major axes for particle j that overlaps particle
i. We first select the ûi orientation along one of the three semi-
major axes that maximizes P4(ûi,ûj) for a given ûj. We then
average Pmax

4 (ûj) over all particles j that overlap i. The local
cubatic order parameter Cloc

4 is defined as the maximum over
the three orientations for ûj. We plot the global versus the local
orientational order parameters in Fig. 13. For the nematic and
cubatic order, the global and local order parameters grow
proprotionately.

Fig. 12 The reduced aspect ratio b versus the asphericity A for all of the
particle shapes studied. The solid and dashed curves correspond to eqn (9)
and (10) for oblate and prolate ellipsoids, respectively. The dashed-dotted
curve corresponds to superellipsoids with p = 2.

Fig. 13 (a) The global nematic order parameter S2 plotted versus the local
nematic order parameter Slocal

2 for all particle shapes studied. (b) The global
cubatic order parameter C4 plotted versus the local cubatic order para-
meter Cloc

4 for all particle shapes studied.
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Appendix C: Gaussian curvature at
contact points

In this Appendix, we show that for packings of superellipsoids
with small coordination numbers at jamming onset, the
Gaussian curvature %KG at the points of contact are typically
small, suggesting that two flat contacting surfaces can con-
strain multiple rotational degrees of freedom. In Fig. 14, we
show the probability distribution P(KG), where KG = %KG(abc)2/3,
for superellipsoid packings generated via Protocol 1. (Note that
each contact point contributes two KG values.) We find that
P(KG) for packings of cube-like superellipsoids, e.g. with p = 2
and small zJ, possesses a wide tail that extends to small values
of KG. For other particle shapes, such as oblate and prolate
ellipsoids, P(KG) is much narrower and does not extend to small
values of KG.

These results suggest that contacts between flat surfaces are
more likely to induce quartic modes than those between curved
surfaces.53 However, it is difficult to establish this correlation
quantitatively because the vibrational modes of the dynamical
matrix describe the collective behavior of all of the degrees of
freedom within a jammed packing, while contact curvature
only includes local geometric information.23 Alternatively, pre-
vious studies focused on the convexity and concavity of the
feasible region for constrained hard nonspherical particles in
configuration space to understand hypostaticity.17,21 A physical
picture unifying these two approaches is a topic of ongoing
studies.
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