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We investigate the mechanical response of jammed packings of repulsive, frictionless spherical particles
undergoing isotropic compression. Prior simulations of the soft-particle model, where the repulsive interactions
scale as a power law in the interparticle overlap with exponent α, have found that the ensemble-averaged shear
modulus 〈G(P)〉 increases with pressure P as ∼P(α−3/2)/(α−1) at large pressures. 〈G〉 has two key contributions:
(1) continuous variations as a function of pressure along geometrical families, for which the interparticle contact
network does not change, and (2) discontinuous jumps during compression that arise from changes in the
contact network. Using numerical simulations, we show that the form of the shear modulus Gf for jammed
packings within near-isostatic geometrical families is largely determined by the affine response Gf ∼ Gf

a ,
where Gf

a /Ga0 = (P/P0 )(α−2)/(α−1) − P/P0, P0 ∼ N−2(α−1) is the characteristic pressure at which Gf
a = 0, Ga0

is a constant that sets the scale of the shear modulus, and N is the number of particles. For near-isostatic
geometrical families that persist to large pressures, deviations from this form are caused by significant nonaffine
particle motion. We further show that the ensemble-averaged shear modulus 〈G(P)〉 is not simply a sum of two
power laws, but 〈G(P)〉 ∼ (P/Pc )a, where a ≈ (α − 2)/(α − 1) in the P → 0 limit and 〈G(P)〉 ∼ (P/Pc )b, where
b � (α − 3/2)/(α − 1), above a characteristic pressure that scales as Pc ∼ N−2(α−1).

DOI: 10.1103/PhysRevE.103.022902

I. INTRODUCTION

Granular materials, such as collections of grains, bubbles,
or other macroscopic particles, interact via highly dissipative
forces, which cause these materials to come to rest unless they
are continuously driven, e.g., by gravity, shear, or other ap-
plied deformations [1]. Further, granular materials transition
from fluid- to solidlike states with a nonzero static shear mod-
ulus when they are compressed to sufficiently large packing
fractions [2]. Despite numerous experimental [3], theoreti-
cal [4], and simulation studies [5] of the jamming transition
in granular media, there are numerous open questions con-
cerning the structural properties and mechanical response of
jammed granular packings.

A simple model for jamming in granular materials is
one where we consider frictionless, spherical particles that
interact via the pairwise, purely repulsive, finite-ranged (“soft-
particle”) potential [6,7]

U (ri j ) = ε

α

(
1 − ri j

σi j

)α

�

(
1 − ri j

σi j

)
, (1)

where ri j is the separation between the centers of particles i
and j, σi j = (σi + σ j )/2 is the average diameter of particles

*These authors contributed equally to this work.

i and j, �(·) is the Heaviside step function that prevents
particles from interacting if they are not in contact, ε is the
characteristic energy scale, and α is the power-law scaling
exponent of the interaction. For this interaction potential, the
onset of jamming in a system with periodic boundary con-
ditions occurs when the number of interparticle contacts Nc

first reaches the isostatic value [8], N0
c = dN − d + 1, where

d = 2, 3 is the spatial dimension and N is the number of
nonrattler particles [9]. As the system is further compressed,
the pressure increases from zero.

An important feature of the mechanical response of
jammed particle packings is the dependence of the shear
modulus G and bulk modulus B on the pressure P under
isotropic compression. Prior computational studies of jammed
packings of spherical particles have shown that the pressure
dependence of the bulk modulus is dominated by the affine
response, whereas the pressure dependence of the shear mod-
ulus has significant nonaffine contributions [2]. For example,
an effective-medium theory, which assumes only affine mo-
tion of the particles, predicts that the shear modulus scales
as G(P) ∼ P1/3 for jammed packings of spheres with re-
pulsive Hertzian spring interactions [10] [i.e., α = 5/2 in
Eq. (1) [11]], whereas experiments and simulations have
shown that G increases more strongly than P1/3 for pack-
ings of Hertzian spheres [7,12,13]. Other studies of sphere
packings with repulsive linear spring interactions have shown
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that the ensemble-averaged shear modulus is constant at low
pressures, G(P) ∼ P1/2 at high pressures, and the crossover
pressure that separates the two scaling regimes decreases as
1/N2 with increasing system size [14].

What determines the pressure dependence of the shear
modulus as packings of spherical particles are compressed
above jamming onset? We have shown in previous studies [15]
of jammed packings of spherical particles (with α = 2) that
the pressure dependence of the shear modulus is controlled by
two key contributions: geometrical families [16] and changes
in the interparticle contact network [17]. For isotropic com-
pression, jammed packings within a given geometrical family
are mechanically stable packings with different pressures that
are related to each other via continuous, quasistatic changes
in packing fraction with no changes in the contact network. In
prior studies [15], we found that the shear modulus G f within
each geometrical family decreases with increasing pressure
when the interparticle contact network does not change during
compression. In these studies, we assumed that (for repul-
sive linear spring interactions) G f varies continuously as
G f (P)/G f

0 = 1 − P/P f
0 , where G f

0 = G f (0) and P f
0 is the

pressure at which G f = 0. In the present work, we will revisit
this assumption and more accurately determine the depen-
dence of G f on pressure.

Geometrical families begin and end at “point” and “jump
changes” in the contact network [17,18]. Point changes in-
volve the addition or removal of a single interparticle contact
(or multiple contacts when a rattler is added or removed
from the contact network) without significant particle mo-
tion. Point changes give rise to a discontinuous jump in the
shear modulus for the power-law exponent α = 2 in Eq. (1),
but not for α > 2. In contrast, jump changes correspond to
mechanical instabilities [19,20] with multiple simultaneous
changes in the contact network and a discontinuous jump in
the shear modulus across the jump change for any α. At low
pressures, where there are very few changes in the contact
network, the geometrical family contribution dominates the
ensemble-averaged shear modulus, and thus 〈G〉 ∼ G f

0 for
sphere packings with repulsive linear spring interactions in
the P → 0 limit. At finite pressure, both geometrical families
and changes in the contact network contribute to the pressure
dependence of the ensemble-averaged shear modulus.

In this article, we generalize the description of the pressure
dependence of the shear modulus for packings of spheri-
cal particles compressed above jamming onset to systems
with purely repulsive interactions and α � 2, which includes
jammed packings of Hertzian spheres. In particular, we char-
acterize the pressure dependence of the shear modulus for
geometrical families for near-isostatic packings and decom-
pose the ensemble-averaged shear modulus into contributions
from geometrical families and from point and jump changes
in the contact network for α � 2.

We find several important results. First, we decompose
the shear modulus for each geometrical family G f into the
affine G f

a and nonaffine G f
n contributions [20–22], where

G f = G f
a − G f

n . The affine contribution considers the linear
response of the jammed packing to an ideal simple shear
deformation without relaxation, whereas the nonaffine contri-
bution includes particle motion from minimization of the total

potential energy. We show that the affine shear modulus for
jammed packings within near-isostatic geometrical families
obeys

G f
a

Ga0(α)
=

(
P

P0(α)

) α−2
α−1

− P

P0(α)
, (2)

where Ga0(α) provides a scale for the shear modulus and
P0(α) is the pressure at which G f

a = 0. The affine shear mod-
ulus G f

a includes two terms: a positive contribution that scales
with pressure as [P/P0(α)](α−2)/(α−1) and a term that decreases
linearly with P.

We next characterize the form for the shear modulus G f

of near-isostatic geometrical families close to point and jump
changes in the contact network. We show that when ge-
ometrical families persist to large pressures, the nonaffine
particle motion becomes large, which causes G f to deviate
from the form in Eq. (2). As shown previously for packings
of spherical particles with repulsive linear spring interac-
tions [15], we find that both geometrical families and changes
in the contact network determine the scaling of the ensemble-
averaged shear modulus at finite pressure for all α � 2. The
ensemble-averaged shear modulus scales as 〈G(P)〉 ∼ Pa,
where a ∼ (α − 2)/(α − 1) at low pressures below a char-
acteristic pressure Pc ∼ 1/N2(α−1), and 〈G(P)〉 ∼ Pb, where
b � (α − 3/2)/(α − 1) for P > Pc. Specifically, for Hertzian
spheres, we find that 〈G(P)〉 ∼ P1/3 for P < Pc and 〈G(P)〉 ∼
P2/3 for P > Pc, which is consistent with prior experimen-
tal [10] and simulation results [2,7].

The remainder of this article is organized as follows. In
Sec. II, we describe the numerical methods used in this study,
including the quasistatic, isotropic compression protocol used
to generate the jammed packings and the calculations of the
pressure, shear stress, and shear modulus for the jammed
packings. The key results are presented in Sec. III. We first
describe the calculations of the shear modulus as a function
of pressure for packings in the first and second geometrical
families. We determine analytically the affine contribution
to the shear modulus within a given geometrical family and
compare the affine shear modulus to the total shear modu-
lus obtained from numerical simulations of sphere packings
undergoing quasistatic, isostropic compression. We calculate
the ensemble-averaged shear modulus 〈G〉 as a function of
pressure and show how the scaling of 〈G〉 with pressure
varies with the power-law exponent α. For each α, we de-
compose 〈G(P)〉 into contributions from geometrical families
and changes in the contact network and show that both con-
tributions are important at finite pressure in the large-system
limit. In Sec. IV, we summarize our conclusions and suggest
future research directions. We also include four Appendixes
to provide additional technical details that supplement the
main text. In Appendix A, we include a derivation of the
decomposition of the shear modulus into the affine and non-
affine terms and provide explicit expressions to calculate the
nonaffine term [20,22]. In Appendix B, we provide a deriva-
tion of the pressure dependence of the affine contribution to
the shear modulus of near-isostatic geometrical families. In
Appendix C, we calculate the shear modulus for near-isostatic
geometrical families as a function of pressure for jammed
disk packings with α = 3 and for sphere packings with α = 2
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and 5/2. In Appendix D, we show that since the isostatic
geometrical family contribution to the shear modulus includes
a strongly negative contribution, the shear modulus can be-
come negative for jammed packings generated at fixed shear
strain [23].

II. METHODS

We investigate the mechanical properties of isotropically
compressed jammed packings of bidisperse disks in two di-
mensions (2D) and spheres in 3D, containing N/2 large and
N/2 small particles, each with the same mass m, and diameter
ratio σl/σs = 1.4. The particles are confined within a square
or cubic box with side lengths Lx = Ly = 1 in 2D or Lx =
Ly = Lz = 1 in 3D, and periodic boundary conditions in all di-
rections. We consider pairwise, purely repulsive, finite-ranged
interactions between particles of the form in Eq. (1), for which
the potential energy scales as a power law in the overlap
between pairs of particles with exponent α. Pair forces are
calculated using �fi j = −dU (ri j )/dri j r̂i j , where r̂i j = �ri j/ri j is
the unit vector vector pointing from the center of particle j to
the center of particle i. Results are presented below for α = 2
(linear springs), 5/2 (Hertzian springs), and 3. The pressure,
shear stress, and shear modulus are expressed in units of ε/σ d

s
and forces are expressed in units of ε/σs below.

We calculate the stress tensor �̂ for each mechanically
stable packing using the virial expression [24]

�̂βδ = L−d
∑
i> j

fi jβri jδ, (3)

where β, δ = x, y, or z, fi jβ is the β component of the in-
terparticle force �fi j on particle i due to particle j, and ri jδ is
the δ component of the separation vector �ri j . Note that we
exclude rattler particles when calculating �̂βδ . We define the
shear stress as � = −�̂xy and the pressure as P = �̂ββ/d . To
calculate the shear modulus G numerically for each packing,
we apply a series of small affine simple shear strain steps,
x′

i = xi + dγ yi, to the jammed packing in combination with
Lees-Edwards boundary conditions, where dγ = 10−9 is the
shear strain increment, and minimize the total potential energy
U = ∑

i> j U (ri j ) using the FIRE algorithm [25] after each
applied shear strain. We then measure the static shear modulus
G = d�/dγ in the γ → 0 limit.

Below, we will characterize the shear modulus as a func-
tion of pressure from the onset of jamming near P = 0 to
systems that are significantly compressed with overlaps 〈ri j −
σi j〉/σi j ≈ 1%. To initialize the system, we randomly place
particles in the simulation cell at rest and with no overlaps at
packing fraction φ < 0.01. We increase the packing fraction
in small increments dφ by increasing the particle diameters
uniformly, and following each compression step, we minimize
the total potential energy U . Energy minimization is termi-

nated when (
∑

i
�fi/N )

2
< 10−32, where �fi = ∑

j
�fi j . Note

that energy minimization can terminate when all of the pair
forces fi j are near zero (i.e., the system is unjammed) or when
the system achieves force balance with nonzero pair forces.
After each compression step, we measure the pressure P and
compare it to a target pressure Pt . If P < Pt , we compress the
system by dφ and minimize the total potential energy. If P >

Pt , we return to the system with the lower pressure, reduce
the packing fraction increment from dφ to dφ/2, and com-
press the system again, and repeat the process. This process
is terminated when the pressure satisfies Pt < P < (1 + ζ )Pt ,
where ζ = 10−7.

We sample more than 1000 jammed packings logarithmi-
cally in pressure, spanning from isostatic packings at P =
10−7 to compressed states with P = 10−2 for α = 2. To gen-
erate packings of spherical particles interacting via Eq. (1)
with α = 5/2 and 3, we initialized the system with iso-
static packings generated using α = 2 and then performed
the compression protocol plus energy minimization using the
appropriate α. Using the initialization, we have verified that
the isostatic contact networks are the same for all α that we
studied. For α = 5/2 and 3, the pressures that we sample vary
from P = 10−10 to 10−2.

III. RESULTS

The results concerning the mechanical properties of
jammed packings of spherical particles with finite-ranged,
purely repulsive interactions are presented in three sections
below. In Sec. III A, we investigate the shear modulus G(1) for
jammed packings of spherical particles that occur in the first,
isostatic geometrical families (for power-law exponents α =
2, 5/2, and 3 and several system sizes) and determine how G(1)

varies with pressure prior to the first change in the interparticle
contact network. [Choose f = 1 in Eq. (2).] We show that
for small pressures, the shear modulus of the first geometrical
family, G(1) ∼ G(1)

a , is given by the affine contribution to the
shear modulus. For near-isostatic geometrical families that
persist to higher pressures, the nonaffine contribution plays
an important role in determining the behavior of G(1)(P) even
though the contact network does not change. In Sec. III B, we
calculate the pressure-dependent shear modulus of jammed
packings that belong to the second geometrical family, i.e.,
packings that have undergone a change in the contact network
and now belong to a different geometrical family than the
isostatic one that occurs in the P → 0 limit. In Sec. III C,
we determine the ensemble-averaged shear modulus 〈G〉 and
find a master curve for 〈G(P)〉 as a function of system size.
To better understand the pressure dependence, we decompose
〈G〉 = 〈G f 〉 + 〈Gr〉 into contributions from geometrical fam-
ilies G f and changes in the contact network Gr . We show
that in the large-system limit both contributions are important
for determining the ensemble-averaged shear modulus 〈G〉 at
finite pressure.

A. Isostatic geometrical families

Isotropically compressed jammed packings occur as ge-
ometrical families as a function of pressure. Specifically,
if we consider a packing at jamming onset with P = 0,
it will possess packing fraction φJ , nonrattler particle po-
sitions �R = {x1, x2, . . . , xN , y1, y2, . . . , yN } in 2D or �R =
{x1, x2, . . . , xN , y1, y2, . . . , yN , z1, z2, . . . , zN } in 3D, and a
contact network with an isostatic number of contacts, Nc =
N0

c . If we compress the jammed system by dφ (and minimize
the total potential energy), the particle positions will change
continuously with dφ to �R′, the pressure will become nonzero,
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FIG. 1. Snapshots of N = 32 jammed disk packings with repulsive linear spring interactions [α = 2 in Eq. (1)] undergoing isotropic
compression before and after a point change where a new contact is added to the contact network (indicated by thin blue lines). In (a), we show
an isostatic packing at P = 10−7 with Nc = N0

c = 59 contacts. (b) The packing in (a) has been compressed to P = 4.60 × 10−6 without any
changes in the contact network. The vectors indicate the displacements of the particle centers relative to the packing in (a) after multiplying by
100. (c) The packing in (c) has been compressed to P = 4.65 × 10−6, which results in the addition of one contact, Nc = N0

c + 1, indicated by
the thick black line. The shaded particles indicate rattlers.

and as long as dφ is sufficiently small, the interparticle contact
network will not change. At a given pressure P∗, which is dif-
ferent for each isostatic contact network, the contact network
will undergo a point change or a jump change [18]. In Fig. 1,
we show the contact network for an isostatic jammed packing
(with N = 32 and α = 2) near the onset of jamming (with
P = 10−7) and immediately before (with P = 4.60 × 10−6)
and after (with P = 4.65 × 10−6) a point change. After the
point change, the jammed packing has one extra interparticle
contact and Nc = N0

c + 1. This behavior is similar for isotrop-
ically compressed packings with larger system sizes, except
P∗ decreases with increasing system size.

The shear modulus G(1) of isostatic geometrical families
can be decomposed into the affine G(1)

a and nonaffine contri-
butions G(1)

n [20,22]: G(1) = G(1)
a − G(1)

n . (See Appendix A.)
The affine contribution G(1)

a considers the linear response of
the jammed packing to an ideal simple shear deformation
without relaxation, whereas the nonaffine contribution G(1)

n
includes particle motion from minimization of the total poten-
tial energy after the applied simple shear strain. In Fig. 2(a),
we show the shear modulus G(1) versus pressure P (on loga-
rithmic scales) for isostatic disk packings within each of 50
different geometrical families generated using N = 32 and
α = 2. We find that for each geometrical family, G(1) tends to
a constant in the P → 0 limit, and decreases with increasing
pressure. Note that the curves in Fig. 2(a) for G(1)(P) end at
different pressures P∗ where a point or jump change in the
contact network occurs. (We find similar results for jammed
sphere packings in 3D with α = 2 in Appendix C.)

We first compare G(1)(P) [black points in Fig. 2(a)] to
the affine contribution to the shear modulus G(1)

a (P) [blue
lines in Fig. 2(a)], where G(1)

a (P)/Ga0(2) = 1 − P/P0(2) is
derived and the expressions for Ga0(2) and P0(2) are given in
Appendix B. On this scale, we do not see large deviations from
G(1) ∼ G(1)

a . (Similar data for jammed disk packings with
α = 5/2 are shown in Fig. 3.) The probability distributions
for the coefficients P0(2) and Ga0(2) for several system sizes
are shown in Figs. 4(a) and 5(a). We find that the average

values 〈P0(2)〉 ∼ N−2 and 〈Ga0(2)〉 ∼ N−1 tend to zero in
the large-system limit as shown in the insets to Figs. 4(a)
and 5(a).

To investigate G(1)(P) for jammed packings of repulsive
Hertzian disks, we start with an isostatic disk packing gen-
erated using repulsive linear spring interactions at the lowest
pressure we considered, change the interaction potential from
α = 2 to 5/2, and minimize the total potential energy. (See
the description of the packing-generation protocol in Sec. II.)
We verified that each lowest-pressure, isostatic packing for
repulsive linear spring interactions gives rise to an isostatic
packing for repulsive Hertzian spring interactions. We then
repeat (for repulsive Hertzian spring interactions) the same
isotropic compression protocol used to generate isostatic geo-
metrical families for systems with α = 2. We show the shear
modulus G(1)(P) for the isostatic geometrical families for
disks with α = 5/2 (on logarithmic scales) in Fig. 3(a). In
contrast to the results for repulsive linear spring interactions,
G(1) → 0 in the P → 0 limit. As we found for α = 2, G(1) also
decreases at sufficiently large pressures and we do not find
significant deviations from G(1) ∼ G(1)

a on logarithmic scales.
[Similar results for sphere packings in 3D with α = 5/2 are
shown in Fig. 15(a) in Appendix C.]

Using Eq. (2), we predict G(1)
a /Ga0(3) = [P/P0(3)]1/2 −

P/P0(3) for jammed packings of spherical particles with α =
3 in isostatic gemoetrical families. We show G(1)(P) for pack-
ings with α = 3 in Fig. 16(a) in Appendix C. Thus, from Eq. 2,
G(1)(P) tends to zero in the P → 0 limit for all α > 2 and
after a characteristic pressure that depends on the power-law
exponent α and system size N , G(1)(P) decreases linearly with
increasing pressure for all α. The −P/P0(α) term in G(1)

a can
give rise to unstable packings with G(1) < 0 at finite pres-
sures [23,26,27], but our results emphasize that all jammed
packings possess G(1) > 0 at sufficiently low pressures. (See
Appendix D for statistics of G(1) < 0 as a function of pressure
and system size for several α values.)

With a more detailed analysis, we can quantify deviations
in G(1) from G(1)

a by multiplying both sides of Eq. (2) by
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FIG. 2. (a) Shear modulus G(1) vs pressure P (black points) for isostatic packings with N = 32 disks within 50 geometrical families that
maintain their interparticle contact networks for purely repulsive linear (α = 2) spring interactions. The blue lines give the affine contribution
G(1)

a [Eq. (2)] for each geometrical family. Blue open circles (red crosses) at the end of G(1) indicate that the packing experienced a point
(jump) change at that particular pressure. In this panel, we do not show packings with G(1) < 0. (b) (G(1)/G0 )(P/P0)−1/2 for isostatic
geometrical families plotted vs P/P0 for disk packings with repulsive linear (α = 2) spring interactions, for several system sizes: N = 32
(black upper triangles), 64 (blue circles), 128 (red diamonds), 256 (green downward triangles), and 512 (magenta asterisks). The dashed
line is Eq. (4) for α = 2 and the solid lines are fits to Eq. (5). In the inset, we show �G(1) = G(1)(P/P0) − G(1)(0) (black upward triangles),
�G(1)

n = G(1)
n (P/P0) − G(1)

n (0) (red dots), and �G(1)
a = G(1)

a (P/P0) − G(1)
a (0) (blue ×) with best fits to Eq. (2) (black, red, and blue solid lines,

respectively) for an example N = 32 packing with α = 2. (c) G(1) vs P for the packings in (a) plotted on linear scales (with G(1) < 0). The
blue lines indicate best fits to Eq. (5) for each geometrical family.

[P/P0(α)]−(α−3/2)/(α−1) to yield the symmetric form

G(1)

G0(α)

(
P

P0(α)

)− α−3/2
α−1

=
(

P

P0(α)

)− 1
2(α−1)

−
(

P

P0(α)

) 1
2(α−1)

.

(4)

For P 
 P0(α), the term on the right-hand side of
Eq. (4) with the positive exponent will dominate,
whereas for P � P0(α), the term with the negative
exponent will dominate. In Figs. 2(b) and 3(b), we plot
[G(1)/G0(α)][P/P0(α)]−(α−3/2)/(α−1) vs P/P0(α) for packings
in isostatic geometrical families with α = 2 and 5/2. The

data for G(1) show reasonable collapse onto a master curve
(especially at low pressures) for the shear modulus for α = 2
and 5/2 for all isostatic packings that we generated.

In Figs. 2(b) and 3(b), we show that G(1) deviates from
the dimensionless affine scaling form in Eq. (4) at large P/P0

for some of the packings with α = 2 and 5/2. In the insets
to Figs. 2(b) and 3(b), we show that the deviations of G(1)

from the scaling form are caused by the growing nonaffine
contribution to the shear modulus as the pressure increases.
These results are the same for G(1) for all packings that pos-
sess deviations at large P/P0 in Figs. 2(b) and 3(b). Since the
nonaffine motion is increasing toward the end of the isostatic

FIG. 3. (a) Shear modulus G(1) vs pressure P (black points) for isostatic packings with N = 32 disks within 50 geometrical families that
maintain their interparticle contact networks for Hertzian (α = 5/2) spring interactions. The blue lines give the affine contribution G(1)

a [Eq. (2)]
for each geometrical family. Blue open circles (red crosses) at the end of each G(1) indicate that the packing experienced a point (jump) change
at that particular pressure. We do not show packings with G(1) < 0. (b) (G(1)/G0 )(P/P0)−2/3 for isostatic geometrical families plotted vs P/P0

for disk packings with Hertzian (α = 5/2) spring interactions, for several system sizes: N = 32 (black upper triangles), 64 (blue circles), 128
(red diamonds), 256 (green downward triangles), and 512 (magenta asterisks). The dashed line is Eq. (4) for α = 5/2 and the solid lines are
fits to Eq. (5) for α = 5/2. In the inset, we show G(1) (black upward triangles), G(1)

n (red dots), and G(1)
a (blue ×) with best fits to Eq. (2) (black,

red, and blue solid lines, respectively) for an example N = 32 packing with α = 5/2. (c) G(1) vs P for the packings in (a) plotted on a linear
scale (and including packings with G(1) < 0). The blue lines indicate best fits to Eq. (5) for each geometrical family.
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FIG. 4. Probability distributions of the characteristic pressure
P0(α) for (a) α = 2 and (b) 5/2 for N = 32 (black upward triangles),
128 (blue circles), 512 (red diamonds). [P0(α) was obtained using a
best fit of the data for G(1) to Eq. (4).] The insets to (a) and (b) display
〈P0〉 (averaged over geometrical families) vs system size N for α = 2
and 5/2, respectively. The dashed lines have slopes equal to −2 and
−3 in the insets to (a) and (b).

geometrical families, it is likely that it is correlated with a
mechanical instability [20,22].

To better capture the shear modulus for isostatic geomet-
rical families G(1)(P) over the full range of pressure, we
consider the empirical form

G(1)

G0(α)
=

(
P

P0(α)

) α−2
α−1

− P

P0(α)

(
P0(α) − P1(α)

P − P1(α)

)κ

, (5)

where G(1)[P0(α)] = 0 and P1(α) > P0(α) is the pressure at
which G(1) has an apparent power-law divergence to −∞
with exponent 0 < κ < 1. In Figs. 2(c) and 3(c), we show
G(1)(P) for α = 2 and 5/2 on a linear scale and include
G(1) < 0. G(1)(P) decreases roughly linearly with pressure for
P0 < P � P1, but then decreases much faster as the pressure
approaches P1 for several of the geometrical families. The

FIG. 5. Probability distributions of the characteristic shear mod-
ulus Ga0(α) for (a) α = 2 and (b) 5/2 for N = 32 (black upward
triangles), 128 (blue circles), 512 (red diamonds). [Ga0(α) was ob-
tained using a best fit of the data for G(1) to Eq. (4).] The insets
to (a) and (b) display 〈Ga0〉 (averaged over geometrical families) vs
system size N for α = 2 and 5/2, respectively. The dashed lines have
slopes equal to −1 and −2 in the insets to (a) and (b).

fits of G(1)(P) to Eq. (5) in Figs. 2(c) and 3(c) show that it
provides a good description of G(1)(P) over the full range of
pressure. The probability distributions for P1(α) for several
system sizes and α = 2 and 5/2 are provided in Fig. 6. For
some geometrical families, for example, for those where point
changes occur at low pressures, G(1)(P) does not deviate
significantly from the affine form in Eq. (4) and P1 is much
greater than the pressure range we consider. When we do not
include the P1 values for these geometrical families in the
average, we find that 〈P1〉 ∼ 〈P0〉 ∼ N−2(α−1).

B. Shear modulus for the second geometrical family

In the previous section, we focused on the pressure-
dependent shear modulus G(1) of isostatic geometrical fami-
lies with N0

c contacts, prior to the first change in the contact
network. In this section, we show preliminary studies of the
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FIG. 6. Probability distributions of the characteristic pressure
P1(α) for (a) α = 2 and (b) 5/2 for N = 32 (black upward triangles),
128 (blue circles), 512 (red diamonds). [See Eq. (5) for the definition
of P1(α).] The insets to (a) and (b) display 〈P1〉 (averaged over geo-
metrical families) vs system size N for α = 2 and 5/2, respectively.
The dashed lines have slopes equal to −2 and −3 in the insets to
(a) and (b).

shear modulus G(2) of the second geometrical family after
the packing undergoes a point or jump change in the con-
tact network at P∗. (See Figs. 7 and 8.) We find that when
isostatic geometrical families undergo changes in the contact
network during isotropic compression, ≈75% undergo point
changes to a second geometrical family and ≈25% undergo
jump changes to a second geometrical family for packings
with repulsive linear and Hertzian spring interactions. These
fractions do not depend strongly on system size. After point
changes, nearly all of the packings in the second geometri-
cal families possess N0

c + 1 contacts. (Note that some point
changes correspond to rattler particles that join the contact
network, and these point changes cannot be described as an
isostatic system that gains a single contact.) For packings
(with both α = 2 and 5/2 interactions) that undergo jump
changes, ≈60% of the packings in the second geometrical

FIG. 7. Shear modulus G(i) of a series of N = 32 disk packings
with repulsive (a) linear and (b) Hertzian spring interactions as the
system undergoes a point change during isotropic compression (at
P ≈ 1.29 × 10−5 for α = 2 and P = 1.37 × 10−6 for α = 5/2 in-
dicated by vertical dashed lines) from the isostatic (black upward
triangles) geometrical family with N0

c contacts to the second geo-
metrical family (blue circles) with N0

c + 1 contacts.

families possess N0
c contacts and most of the remaining frac-

tion possess N0
c + 1 contacts. These results also do not depend

strongly on system size.
In Fig. 7, we show the shear modulus G(i) (for the first

and second geometrical families) as a function of pressure
for a series of disk packings during isotropic compression. At
P∗, the disk packing [with α = 2 in Fig. 7(a) and α = 5/2 in
Fig. 7(b)] undergoes a point change and the isostatic geomet-
rical family transitions to a second geometrical family with
N0

c + 1 contacts. As pointed out in our previous studies [18],
G(i) is discontinuous across a point change for α = 2, but it
is continuous across a point change for α > 2. For α = 2,
we find that G(2) for most of the second geometrical families
after a point change obey the same scaling form in Eq. (4)
for isostatic geometrical families, and the characteristic pres-
sure P0 ∼ N−2 and shear modulus G0 ∼ N−1 for the second
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FIG. 8. Shear modulus G(i) of a series of N = 32 disk packings
with repulsive (a) linear and (b) Hertzian spring interactions as the
system undergoes a jump change during isotropic compression (at
P ≈ 1.23 × 10−4 for α = 2 and P = 4.57 × 10−6 for α = 5/2 in-
dicated by vertical dashed lines) from the isostatic (black upward
triangles) geometrical family with N0

c contacts to a second geometri-
cal family (blue circles) with N0

c + 1 contacts.

geometrical families tend to zero in the large-system limit.
[See Fig. 9(a).] As we found for the first geometrical fami-
lies in Fig. 2(b), deviations from Eq. (4) can occur at large
pressures P > P0 when G(2) has a significant nonaffine contri-
bution. [See the inset to Fig. 9(a).]

The shear moduli for the second geometrical families,
G(2), for packings with α = 5/2 after a point change possess
deviations from the scaling form in Eq. (4) both at small
pressures near the first point change and at large pressures
near the second change in the contact network, as shown in
Fig. 9(b). For the first geometrical family, there is an important
characteristic pressure P0 that determines when G(1) = 0. (For
the first geometrical families that persist to large pressures, we
also identify a characteristic pressure P1 > P∗, which likely
signals an instability of the contact network.) For the second
geometrical family following a point change with α > 2, there

is another characteristic pressure P∗, indicating the pressure
at which the point change from the first to second geometrical
family occurs. For highly nonlinear interactions with α > 2,
the presence of multiple characteristic pressures causes G(2) to
deviate from the affine form in Eq. (4). The inset to Fig. 9(b)
shows that the deviation of G(2) from the affine scaling form
at small pressures is also caused by nonaffine particle motion.
The deviations of G(2) from the affine scaling form at large
pressures following point changes for α = 5/2 are similar
to those found for G(1) near the end of the first geometrical
family.

As shown in Fig. 8, the shear modulus G(i) is discontinuous
when the system undergoes a jump change for packings with
all α. If an isostatic geometrical family undergoes a jump
change to a second geometrical family, G(2) obeys Eq. (4)
for packings with α = 2 and 5/2 over a wide range of pres-
sure. [See Fig. 9(c).] Again, there can be deviations in G(2)

from the affine scaling form when the second geometrical
family persists to large pressures. In future studies, we will
investigate the general form of the shear modulus G(i)(P) for
the third-, fourth-, and higher-order geometrical families at
elevated pressures.

C. Ensemble-averaged shear modulus

In this section, we investigate the pressure dependence of
the ensemble-averaged shear modulus 〈G〉, which is often
studied to mimic the large-system limit. As shown in the
previous section, jump changes in the contact network give
rise to discontinuities in the shear modulus for packings with
all α. In contrast, the shear modulus is continuous across point
changes for α > 2, but it is discontinuous for α = 2. The shear
modulus for a single initial condition λ at P = 0 undergoing
isotropic compression can be written as Gλ = G f ,λ + Gr,λ,
where G f ,λ describes the shear modulus along continuous
geometrical families and Gr,λ includes discontinuities in the
shear modulus from point and jump changes. (See Fig. 10.)
Gr,λ for α = 2 includes discontinuities in the shear modulus
from both point and jump changes, whereas Gr,λ includes
changes in the shear modulus from jump changes only for
α > 2. The ensemble-averaged shear modulus 〈G〉 is obtained
by averaging over initial conditions λ.

In Fig. 11, we show 〈G〉, |〈G f 〉|, and 〈Gr〉 for N = 128 disk
packings with α = 2 and 5/2. At small pressures, 〈G〉 ∼ 〈G f 〉
since changes in the contact network are rare. In the P → 0
limit, 〈G〉 is a constant for packings with α = 2 and 〈G〉 ∼
P1/3 for packings with α = 5/2, consistent with the results in
Sec. III A. For packings with α = 2 and 5/2, as the pressure
increases, 〈G f 〉 decreases toward zero and at a characteristic
pressure, 〈G〉 ≈ 〈Gr〉. As the pressure continues to increase,
〈G f 〉 < 0 (since the negative contribution to G f dominates at
large pressures), which causes the cusp in |〈G f 〉| in Fig. 11.
At large pressures, both 〈G f 〉 and 〈Gr〉 contribute to 〈G〉, and
〈G〉 < 〈Gr〉.

In contrast to the affine scaling behavior found for the shear
modulus G(1) of isostatic geometrical families, the pressure
dependence of the ensemble-averaged shear modulus 〈G〉 is
not simply the sum (or difference) of two power laws in
pressure [15], 〈G〉 ∼ APa + BPb with exponents a and b.
(See Figs. 12 and 13.) To illustrate this, we consider the
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FIG. 9. (a) (G(2)/G0 )(P/P0)−1/2 vs P/P0 for packings with α = 2 in the second geometrical family following a point or jump change
in the contact network. (G(2)/G0 )(P/P0)−2/3 is plotted vs P/P0 for packings with α = 5/2 in the second geometrical family following (b) a
point change or (c) a jump change in the contact network. In (a)–(c), several system sizes are shown: N = 32 (black upper triangles), 64
(blue circles), 128 (red diamonds), 256 (green downward triangles), and 512 (magenta asterisks). The dashed lines in (a)–(c) give Eq. (4) for
α = 2 in (a) and 5/2 in (b) and (c). In the insets to (a)–(c), we show �G(1) = G(1)(P/P0) − G(1)(0) or G(1)(P/P0) (black upward triangles),
�G(1)

n = G(1)
n (P/P0) − G(1)

n (0) or G(1)
n (P/P0) (red dots), and �G(1)

a = G(1)
a (P/P0 ) − G(1)

a (0) or G(1)
a (P/P0) (blue ×) with best fits to Eq. (2)

(black, red, and blue solid lines, respectively) for an example N = 32 packing with α = 2 [inset to (a)] and 5/2 [insets to (b) and (c)].

dimensionless, symmetric form for 〈G〉,
〈G〉
Gc

(
P

Pc

)−(a+b)/2

=
(

P

Pc

)(a−b)/2

+
(

P

Pc

)−(a−b)/2

, (6)

where Gc = 〈G〉(Pc)/2. Equation (6) is dominated by the
P(a−b)/2 term for P < Pc and by the P−(a−b)/2 term for P >

Pc. In Figs. 12(a) and 13(a), we plot Eq. (6) as dashed
lines for packings with α = 2 and 5/2 and compare it to
the simulation results for 〈G〉

Gc (α) ( P
Pc (α) )

−(a+b)/2
for a ∼ (α −

2)/(α − 1) and b ∼ (α − 3/2)/(α − 1). For packings with
both α = 2 and 5/2, the simulation data transition be-
tween the two limiting power-law behaviors (P/Pc)(a−b)/2 and
(P/Pc)−(a−b)/2 much more abruptly than the sum of the two
power laws, (P/Pc)(a−b)/2 + (P/Pc)−(a−b)/2. To capture this
feature in the simulation data, we fit the simulation data for

FIG. 10. Shear modulus Gλ for initial condition λ at P = 0 un-
dergoing isotropic compression as a function of pressure P for an
N = 32 packing with repulsive linear (black upward triangles) and
Hertzian spring interactions (blue circles). Gλ = Gf ,λ + Gr,λ can be
decomposed into the contributions from the continuous geometrical
families Gf ,λ and discontinuities Gr,λ caused by point and jump
changes in the contact network.

〈G〉
Gc (α) ( P

Pc (α) )
−(a+b)/2

to the p-norm of the right-hand side of
Eq. (6), i.e.,

〈G〉
Gc

(
P

Pc

)− a+b
2

=
[(

P

Pc

) p(a−b)
2

+
(

P

Pc

)− p(a−b)
2

] 1
p

, (7)

with p ∼ 2–5 (∼2–15) for packings with N = 32–512 and
α = 2 (α = 5/2). The p-norm generates polynomials with
powers between (a − b)/2 and −(a − b)/2 to capture the
kinklike feature in the simulation data. Fits to Eq. (7) allow
us to collapse 〈G〉(P) for all of the system sizes studied, as
shown in Figs. 12(b) and 13(b). In the insets, we display the
exponent a ∼ (α − 2)/(α − 1) that controls the low-pressure
behavior of 〈G〉. The exponent b � (α − 3/2)/(α − 1) con-
trols the large-pressure behavior. We also find that Pc ∼
N−2(α−1) and Gc ∼ N−2(α−3/2), which is the same system-size
dependence as that for P0 and G0 for isostatic geometrical
families. For α = 2, the scaling exponents in the low- and
high-pressure limits are a ∼ 0 and b ∼ 0.60, and for α =
5/2, the scaling exponents in the low- and high-pressure
limits are a ∼ 0.36 and b ∼ 0.70 [28]. We find similar be-
havior for 〈G〉 for jammed sphere packings in 3D for α =
2 and 5/2. In the large-α limit, we predict that the scal-
ing exponents in the low- and high-pressure limits will both
approach 1.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

The mechanical response of jammed packings of purely
repulsive spherical particles to isotropic compression is com-
plex [13,29]. For example, several studies have shown that
effective-medium theory, which assumes an affine response
to applied deformation, does not accurately predict the be-
havior of the shear modulus of jammed sphere packings as
a function of pressure [7,12]. In addition, simulations of
the “soft-particle” model [2], which assumes purely repul-
sive, finite-ranged interactions between spherical particles that
scale as a power law in their overlap with exponent α, have
suggested that the ensemble-averaged shear modulus scales
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FIG. 11. Ensemble-averaged shear modulus 〈G〉 (black upward
triangles) as a function of pressure P for N = 128 packings with
(a) α = 2 and (b) 5/2 decomposed into contributions from geometri-
cal families |〈Gf 〉| (blue circles) and changes in the contact network
〈Gr〉 (red diamonds). In (a), the dashed line has slope equal to 1/2,
and in (b), the dashed and dotted lines have slopes equal to 1/3 and
2/3, respectively.

with pressure as 〈G〉 ∼ P(α−3/2)/(α−1). However, the origin
of the scaling exponent (α − 3/2)/(α − 1) for the ensemble-
averaged shear modulus is not well understood.

In a recent study, we showed that there are two impor-
tant contributions to the shear modulus in jammed packings
of spherical particles undergoing isotropic compression [15]:
continuous variations in the shear modulus from geometrical
families, for which the interparticle contact network does not
change, and discontinuous jumps in the shear modulus from
changes in the contact network. In the present work, we show
explicitly for α = 2, 5/2, and 3 that the form of the shear
modulus versus pressure for the first, isostatic geometrical
family can be approximated by the affine shear response,
i.e., G(1)/G0(α) = [P/P0(α)](α−2)/(α−1) − P/P0(α). However,
we observe deviations of G(1) from the affine form when
near-isostatic geometrical families persist to large pressures
P > P0(α).

FIG. 12. (a) Ensemble-averaged shear modulus
(〈G〉/Gc )(P/Pc )−(a+b)/2 vs P/Pc for jammed disk packings
with α = 2 and system sizes N = 32 (black upward triangles), 64
(blue circles), 128 (red diamonds), 256 (green downward triangles),
and 512 (magenta asterisks). The dashed lines have slopes equal
to −1/4 and 1/4. The dotted line gives Eq. (6). (b) 〈G〉/Gc plotted
vs (P/Pc )(a+b)/2 for the same data in (a). The solid lines in (a) and
(b) are fits to Eq. (7) with p = 2–5 for system sizes N = 32–512.
The upper left inset shows Pc (black asterisks) and Gc (blue circles)
vs N . The dotted and dashed lines have slopes equal to −1 and −2,
respectively. The lower right inset gives the exponents, a (black
upper triangles) and b (blue diamonds), used in fits to Eq. (7) vs N .
The horizontal dotted and dashed lines indicate a = 0 and b = 0.5,
respectively.

For each initial configuration at P ∼ 0 that we isostropi-
cally compress, we can decompose the shear modulus G =
G f + Gr into contributions from geometrical families (G f )
and from discontinuities arising from point and jump changes
in the contact network (Gr). We show that the ensemble-
averaged shear modulus 〈G〉 ∼ 〈G f 〉 at low pressures since
changes in the contact network are rare. At larger pres-
sures, the geometrical family contribution is dominated by
the −P term (or other negative higher-order terms in P),
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FIG. 13. (a) Ensemble-averaged shear modulus
(〈G〉/Gc )(P/Pc )−(a+b)/2 vs P/Pc for jammed disk packings
with α = 5/2 and system sizes N = 32 (black upward triangles), 64
(blue circles), 128 (red diamonds), 256 (green downward triangles),
and 512 (magenta asterisks). The dashed lines have slopes equal
to −1/6 and 1/6. The dotted line gives Eq. (6). (b) 〈G〉/Gc plotted
vs (P/Pc )(a+b)/2 for the same data in (a). The solid lines in (a) and
(b) are fits to Eq. (7) with p = 2–15 for system sizes N = 32–512.
The upper left inset shows Pc (black asterisks) and Gc (blue circles)
vs N . The dotted and dashed lines have slopes equal to −2 and −3,
respectively. The lower right inset gives the exponents, a (black
upper triangles) and b (blue diamonds), used in fits to Eq. (7) vs
N . The horizontal dotted and dashed lines indicate a = 1/3 and
b = 2/3, respectively.

〈G f 〉 < 0, and 〈G〉 < 〈Gr〉. We find that both 〈G f 〉 and 〈Gr〉
are important for determining 〈G〉 at finite pressure in the
large-system limit. Further, we show that the pressure depen-
dence of 〈G〉 is not simply a sum of two power laws over the
full range of pressure, but 〈G〉 ∼ P(α−2)/(α−1) in the P → 0
limit, 〈G〉 ∼ Pb at large pressures, where b � (α − 3/2)/(α −
1), and the characteristic pressure that separates these scaling
regimes, Pc ∼ N−1/[2(α−1)], tends to zero in the large-system
limit.

This work suggests several areas for future research. First,
we investigated the pressure dependence of the shear mod-
ulus for the first, isostatic geometrical family and provided
preliminary results for the shear modulus of the second
geometrical family with N0

c + 1 contacts. However, we do
not yet know the pressure dependence of the shear mod-
ulus for higher-order geometrical families that occur at
higher pressures. The answer to this question is crucial
for developing a theoretical description for the mechanical
response of jammed packings undergoing isotropic compres-
sion, since the ensemble-averaged shear modulus depends
on the pressure dependence of G f . Second, numerical sim-
ulations suggest that the ensemble-averaged shear modulus
for packings of frictional spherical particles has a similar
pressure dependence as that for packings of frictionless spher-
ical particles, scaling roughly as 〈G〉 ∼ P(α−3/2)/(α−1) at large
pressures [30]. However, the separate contributions to the
shear modulus from geometrical families and changes in the
contact network have not yet been studied for packings of fric-
tional spherical particles. Third, several computational studies
have shown that 〈G〉 ∼ Pη at large pressures for jammed
packings of nonspherical particles [31,32] with α = 2, where
0.5 < η < 1. These results suggest that the scaling exponent
for 〈G(P)〉 at large pressures depends on both the particle
shape [33] (e.g., aspect ratio A) and α. It will be interesting to
determine η(A, α) to understand how the rotational degrees of
freedom affect the mechanical response of jammed packings
of nonspherical particles. Further, for packings of nonspheri-
cal particles undergoing isotropic compression, there have not
been detailed studies of the separate contributions to 〈G〉 from
geometrical families and from changes in the contact network.
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APPENDIX A

In this Appendix, we derive expressions for the affine and
nonaffine contributions [20,22] to the shear modulus G(i) of
near-isostatic geometrical families. (We consider 2D systems
here, but a similar derivation holds for 3D systems.) When
we apply an affine simple shear deformation, the particle
positions are transformed to (xa

i , ya
i ) = (x0

i + γ y0
i , y0

i ) consis-
tent with Lees-Edwards periodic boundary conditions, where
(x0

i , y0
i ) are the particle positions in the undeformed, reference

jammed packing. After each simple shear strain increment γ ,
we minimize the total potential energy U at constant packing
fraction. Thus, after relaxation, the positions of the particles
can be written as the sum of an affine term plus a nonaffine
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term caused by energy minimization:

(x′
i, y′

i ) = (
x0

i + γ y0
i + xn

i , y0
i + yn

i

)
. (A1)

For each reference jammed packing, we can write the total
potential energy as a function of the shear strain and nonaffine
particle positions, rn

iβ , where i = 1, 2, . . . , N indicates the par-
ticle index and β = x, y indicates the Cartesian component of
�r. We assume that the jammed disk packing is at a potential
energy minimum after each shear strain increment and the
total force on each particle remains zero. Thus,

fiβ = −
(

∂U

∂riβ

)
γ

= −
(

∂U

∂rn
iβ

)
γ

= 0, (A2)

where (·)γ indicates that the derivatives are evaluated at a
fixed shear strain γ . We can then take the derivative of
Eq. (A2) with respect to γ ,

−dfiβ

dγ
=

(
∂2U

∂rn
iβ∂γ

)
+

(
∂2U

∂rn
iβ∂rn

jβ

)
drn

jβ

dγ

=
(

∂2U

∂rn
iβ∂γ

)
+

(
∂2U

∂riβ∂r jβ

)
drn

jβ

dγ
= 0. (A3)

The shear stress � is related to the total derivative of the
potential energy with respect to γ :

�Ld = dU

dγ
= ∂U

∂rn
iβ

drn
iβ

dγ
+ ∂U

∂γ
= ∂U

∂γ
. (A4)

Note that for a given reference configuration at fixed strain γ ,
taking derivatives with respect to riβ is equivalent to taking
derivatives with respect to rn

iβ .
Using Eq. (A3), we can solve for the derivative drn

iβ/dγ ,

drn
iβ

dγ
= −M−1

i j � jβ, (A5)

where

�iβ = ∂2U

∂rn
iβ∂γ

(A6)

and the Hessian matrix Mi j is defined by the second deriva-
tives of the total potential energy U with respect to the particle
coordinates,

Mi j = ∂2U

∂riβ∂r jβ
. (A7)

Using Eq. (A4), we can calculate the shear modulus GLd =
d�/dγ ,

GLd = d

dγ

(
∂U

∂γ
+ ∂U

∂rn
iβ

drn
iβ

dγ

)
(A8)

= ∂2U

∂γ 2
+ ∂2U

∂rn
iβ∂γ

drn
iβ

dγ
(A9)

= ∂2U

∂γ 2
− �iβM−1

i j � jβ. (A10)

Thus, we find that the shear modulus G = Ga − Gn,
where Ga = L−d∂2U/∂γ 2 is the affine contribution and

Gn = L−d�iβM−1
i j � jβ is the nonaffine contribution. In partic-

ular, the shear modulus for each geometrical family can be
decomposed as G f = G f

a − G f
n .

APPENDIX B

In this Appendix, we calculate the pressure dependence of
the affine contribution to the shear modulus G f

a for geomet-
rical families of near-isostatic jammed packings of spherical
particles. We consider packings near jamming onset and ap-
ply an affine simple shear shear deformation to their particle
coordinates, (x′

i, y′
i, z′

i ) = (x0
i + γ y0

i , y0
i , z0

i ) in 3D or (x′
i, y′

i ) =
(x0

i + γ y0
i , y0

i ) in 2D, where (x0
i , y0

i , z0
i ) in 3D and (x0

i , y0
i ) in

2D are the particle positions in the original jammed packing,
consistent with Lees-Edwards boundary conditions for simple
shear strain γ . The affine contribution is obtained by calculat-

FIG. 14. (a) Shear modulus G(1) within isostatic geometrical
families vs pressure P for individual N = 64 sphere packings in
3D with α = 2 repulsive interactions. The solid blue lines are fits
to Eq. (2). (b) (G(1)/G0)(P/P0)−1/2 plotted vs P/P0 for the data in
(a) and isostatic geometrical families with G(1) < 0. The dashed line
gives Eq. (4) for α = 2, and the solid black lines are fits to Eq. (5).
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ing G f
a = ∂�/∂γ , where the shear stress is given by

� = εL−d
∑
i> j

(
− xi jyi j

σi j ri j

)(
1 − ri j

σi j

)α−1

�

(
1 − ri j

σi j

)
. (B1)

In Eq. (B1), xi j and yi j are the x and y separations between the
centers of particles i and j. Thus, for the affine contribution,
G f

a = L−d∂2U/∂γ 2, we obtain

G f
a = L−dε

∑
i> j

[
−

(
1 − ri j

σi j

)α−1 y4
i j

σi j r3
i j

+ (α − 1)
x2

i jy
2
i j

σ 2
i j r

2
i j

(
1 − ri j

σi j

)α−2]
�

(
1 − ri j

σi j

)
. (B2)

FIG. 15. Shear modulus G(1) within isostatic geometrical fami-
lies vs pressure P for individual N = 64 sphere packings with α =
5/2 repulsive interactions. The solid blue lines are fits to Eq. (2). The
dashed line in (a) has a slope equal to 1/3. (b) (G(1)/G0 )(P/P0)−2/3

plotted vs P/P0 for the data in (a) and isostatic geometrical families
with G(1) < 0. The dashed line gives Eq. (4) for α = 5/2, and the
solid black lines are fits to Eq. (5).

To determine G f
a as a function of pressure, we write the

pressure

P = �̂ββ/d = ε

dLd

∑
i> j

ri j

σi j

(
1 − ri j

σi j

)α−1

�

(
1 − ri j

σi j

)

in terms of the particle separations. If we define

Pi j = ε
ri j

σi j

(
1 − ri j

σi j

)α−1

�

(
1 − ri j

σi j

)
(B3)

and assume that Pi j scales linearly with pressure for all i, j
pairs,

Pi j = dLdχi jP, (B4)

FIG. 16. Shear modulus G(1) within isostatic geometrical fam-
ilies vs pressure P for individual N = 32 jammed disk packings
with repulsive interactions with power-law exponent α = 3 in
Eq. (1). The dashed line has a slope equal to 1/2. The solid blue
lines are fits to Eq. (2) for each of the 50 geometrical families.
(b) (G(1)/G0 )(P/P0)−3/4 plotted vs P/P0 for the data in (a) and
isostatic geometrical families with G(1) < 0. The dashed line gives
Eq. (4) for α = 3, and the solid black lines are fits to Eq. (5).
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where χi j is independent of pressure, we can use Eqs. (B3)
and (B4) to express G f

a in Eq. (B2) as a function of pressure.
(We have verified numerically for packings with α = 2 and
5/2 that χi j is nearly independent of pressure for near-isostatic
geometrical families. Deviations only occur near the end of
geometrical families.) We find that the affine contribution to
the shear modulus for near-isostatic geometrical families is
given by

G f
a = L−d (dLd )

α−2
α−1 P

α−2
α−1

×
∑
i> j

(α − 1)

(
σi j

ri j

) α−2
α−1 x2

i jy
2
i j

σ 2
i j r

2
i j

χ
α−2
α−1

i j �

(
1 − ri j

σi j

)

− dP
∑
i> j

y4
i j

r4
i j

χi j�

(
1 − ri j

σi j

)
. (B5)

FIG. 17. The probability distribution p(P−) of the pressure P− at
which the shear modulus for the isostatic geometrical family first
becomes negative G(1) < 0 for disk packings with (a) α = 2 and
(b) 5/2 and system sizes N = 32 (black upward triangles), 64 (blue
circles), 128 (red diamonds), 256 (green downward triangles), and
512 (magenta asterisks).

We can express Eq. (B5) in dimensionless form,

G f
a

Ga0(α)
=

(
P

P0(α)

) α−2
α−1

− P

P0(α)
, (B6)

if we define Ga0(α) = f (α)α−1g2−α and P0 = [ f (α)/g]α−1,

where f (α) = L−d (dLd )
α−2
α−1

∑
i> j (α − 1)( σi j

ri j
)

α−2
α−1

x2
i j y

2
i j

σ 2
i j r

2
i j
χ

α−2
α−1

i j

�(1 − ri j

σi j
) and g = d

∑
i> j

y4
i j

r4
i j
χi j�(1 − ri j

σi j
). Both f (α)

and g are roughly independent of pressure and g does not
depend on the power-law exponent α. In Eq. (B6), G f

a = 0
when P = P0(α). For repulsive linear spring interactions,
G f

a/Ga0(2) = 1 − P/P0(2), and for repulsive Hertzian spring
interactions, G f

a/Ga0(5/2) = [P/P0(5/2)]1/3 − P/P0(5/2), as
discussed in Sec. III.

APPENDIX C

In this Appendix, we provide the results for the shear
modulus for isostatic geometrical families for 2D jammed

FIG. 18. Fraction of packings F (P) at each pressure that possess
a negative shear modulus for disk packings with (a) α = 2 and
(b) 5/2 and system sizes N = 32 (black upward triangles), 64 (blue
circles), 128 (red diamonds), 256 (green downward triangles), and
512 (magenta asterisks).
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packings of purely repulsive disks with α = 3 and 3D jammed
packings of purely repulsive spheres with α = 2 and 5/2. In
Figs. 14 and 15, we show that G(1) ∼ G(1)

a for sphere packings
with α = 2 and 5/2. G(1) for α = 2 is constant and G(1) for
α = 5/2 scales as P1/3 in the P → 0 limit and G(1) begins de-
creasing at larger pressures. In Fig. 16, we also show that G(1)

for jammed disk packings with α = 3 is well approximated by
Eq. (2), scaling as P1/2 in the P → 0 limit and then decreasing
at larger pressures. (Note that for many of the geometrical
families for α = 3, a change in the contact network occurs
before the −P term begins contributing significantly to G(1).)

APPENDIX D

In this Appendix, we quantify the frequency with which
disk packings generated using the strain-controlled energy
minimization method possess negative shear moduli. (We
have verified that all packings generated via isotropic com-
pression, even those with negative shear moduli, possess
positive bulk moduli.) The shear modulus for the first geo-
metrical family, G(1) > 0 in the P → 0 limit, but it decreases

with increasing pressure. Thus, the shear modulus can become
negative if a point or jump change in the contact network
does not occur abruptly after the start of the first geomet-
rical family. In Fig. 17, we show the distribution p(P−) of
the pressure P− at which the isostatic geometrical family
first becomes negative. We find that 〈P−〉 ∼ P0 and thus 〈P−〉
tends to zero in the large-system limit. 〈P−〉 ∼ N−2 and ∼N−3

for packings with α = 2 and 5/2, respectively. After a jump
change and after a point change for α = 2, the shear modulus
for the second geometrical family G(2) jumps discontinuously
to either a positive or negative value, depending on the value
of G(1) at the end of the first geometrical family and the
magnitude and sign of the discontinuous jump in the shear
modulus. As the pressure increases, the upward jumps in the
shear modulus become larger than the continuous decreases
in the shear modulus along geometrical families, and thus
the shear modulus remains positive. In Fig. 18, we show
the fraction of disk packings F (P) at each pressure with a
negative shear modulus. The maximum fraction of packings
with negative shear moduli is ≈0.4 and occurs at Pmax/Pc ≈ 1.
Thus, Pmax ∼ N−2 and ∼N−3 for α = 2 and 5/2, respectively.
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