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The supplemental material includes seven sections that
provide additional details concerning the deformable par-
ticle simulations and analyses of the experimental data
of wound closure in epithelial monolayers. In Section I,
we describe the intercellular forces, initialization of the
cell monolayer, generation of the wound, equations of
motion, and tracking of the wound boundary over time
in the numerical simulations of wound closure. In Sec-
tion II, we provide a novel method for calculating smooth
intercellular forces in the deformable particle model sim-
ulations. In Section III, we describe the cell segmenta-
tion, cell shape parameter calculations, and error esti-
mation from the analyses of confocal microscopy images
of wound healing in epithelial tissues in Drosophila [1].
In Sections IV and V, we relate the cell bulk modulus
to the deformable particle area stiffness, and express the
bulk modulus and other simulation quantities in physi-
cal units. In Section VI, we study the deformation of a
cell experiencing an extensile force dipole to give further
evidence that a larger bulk modulus leads to enhanced
shape changes in plastic cells. In Section VII, we discuss
multiple contributing factors to the overall process of cell
shape plasticity.

I. WOUND CLOSURE SIMULATION
PROTOCOL

We model cell monolayers as nearly confluent packings
of deformable particles. Each deformable particle (cell)
i obeys the shape energy in Eq. 1 in the main text and
interacts with other cells through vertex-segment forces

between vertex α on cell i and segment l⃗βj on cell j as
shown in Fig. 2 in the main text. The intercellular forces
can be derived using the following pair potential:

Uint =
∑
i>j

∑
α>β

uint(dαi,βj), (S1)
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ϵ is the cell membrane interaction strength, d ≡ dαi,βj
is the vertex-segment distance, σ is half the membrane
width, l2 = 0.3σ sets the attractive range, l1 controls
the membrane attraction strength, and l1 < l2. The
vertex-segment pair potential uint and the force fint =
−∂uint/∂d are plotted against d/σ in Fig. S1. See Table
S1 for a list of default parameters and other quantities
used in the simulations.
To generate unwounded cell monolayers, we first place

cells with random initial positions within a circular
boundary at an initial packing fraction ϕ0 = 0.78, and
then compress the system in small packing fraction in-
crements ∆ϕ = 0.005 until ϕ = 0.92. After each com-
pression step, we use the FIRE algorithm [2] to minimize
the total potential energy of the cells within the circular
boundary:

U ′
DP =

N∑
i

Ushape,i + Urep + Ucb, (S3)

where Urep is equal to Uint with l1 = 0 and

Ucb =

ϵcb
N∑
i

NV∑
α

(
1− |rαi−R|

σ

)2

, |rαi −R| < σ

0, otherwise.

(S4)

Here, rαi is the distance between a vertex α on cell i and
the center of the circular boundary of radius R. We set
ϵcb = ϵ as the strength of the interaction energy between
the circular boundary and the vertices.
The resulting packings of deformable particles with

A = 1.2 and ϕ = 0.92 serve as initial conditions for the
numerical simulations of wound closure. First, we add
cell-cell adhesion to the packings by setting l1/σ = 0.1
and carry out constant energy dynamics without the cir-
cular boundary for a total time ∼ √

a0/ω to allow the
cells to explore intercellular gaps. We then minimize the
total potential energy UDP (Eq. 4 in the main text) using
an overdamped equation of motion, where each vertex α
on cell i obeys

dr⃗αi
dt

=
f⃗αi
b

. (S5)
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Here, f⃗αi is the total force on the vertex i, and b is
the damping coefficient. Overdamped dynamics are fre-
quently employed in active particle models [3] to balance
the input of energy due to activity, which corresponds to
the purse-string contraction in this model. The effects
of the cells’ environment on cell dynamics are commonly
modeled using a single damping coefficient [3, 4], as we
have done in Equation S5.

We then introduce a wound by removing 5 central
cells in the packing, define the purse-string (PS) on the
wound boundary, and integrate Eq. S5 using a modified
velocity-Verlet algorithm with timestep dt∗ = 0.05/

√
k∗a.

We record cell properties, such as the cell shape param-
eter A, and wound area A throughout the course of the
simulation. The simulated wound boundary is tracked
over time by monitoring vertex-vertex contacts and de-
termining the largest cluster of vertices near the center
of the tissue using the Newman-Ziff union-find algorithm
[5]. We terminate the wound closure simulation when
the wound area satisfies A < 10−2a0. In both the nu-
merical simulations and image analyses, a cell is consid-
ered wound-adjacent if it is within

√
a0/π of the wound

boundary.

II. SMOOTH SLIDING INTERCELLULAR
FORCES

Intercellular forces are bumpy in the deformable par-
ticle model when the intercellular potential is a func-
tion of the vertex-vertex distances. We develop a novel
method (within the deformable particle model) to com-
pute smooth (frictionless) sliding intercellular forces. To
do this, we assume that the intercellular pair potential
Uint is only a function of the closest distance dαi,βj be-

tween vertex α on cell i and line segment l⃗βj on cell j
(Eq. 3 in the main text), which ensures that there is
no component of the intercellular force tangential to the

membrane at l⃗βj as shown in Fig. S2a. This force law
mimics smooth surfaces that consist of connected rect-
angles (cyan) and wedges (blue) in Fig. S2b. Because
dαi,βj is a function of r⃗αi, r⃗βj , and r⃗(β−1)j , forces com-
puted using the pair potential uint(dαi,βj) will affect the
dynamics of all three vertices α, β, and β − 1.
For interaction potentials that depend on the closest

distance between a point and a line segment, one must
determine whether there are discontinuities in the force
that can occur when the closest distance changes discon-
tinuously even though a vertex or line segment moves
by an infinitesimal amount. We consider two cases, con-
cave and convex sections of the cell membrane, classified
by the interior angle θ defined by three successive ver-
tices. In the convex case, θ < π (Fig. S2c), a vertex
that overlaps with the membrane surface at r⃗contact can
slide along the surface with a continuous vertex-segment

distance dαi,βj to the line segment l⃗βj . In the concave
case, θ > π (Fig. S2d), a vertex on a similar trajectory
will experience a discontinuity in the vertex-segment dis-

tance, since the concave surface (Fig. S2b) lacks a wedge
where there is an overlap of the two rectangles. One
method to remove this discontinuity is to add a wedge-
shaped patch, shown as a red grid in Fig. S2e. Within
the wedge-shaped region, a vertex α overlapping with
the membrane surface lβj at r⃗contact incurs an additional
force

fpatch = +
∂uint

∂dαi,βj
, (S6)

such that in the patch region, fpatch provides an
equal and opposite force to offset the discontinuity in
fint(dαi,βj) (Fig. S1b) that occurs when the vertex α
enters the patch region.

III. IMAGE ANALYSIS

To measure the cell shape parameters and wound area
over time of the wounded embryo and wing disc epithe-
lia, we analyze segmented images of the wound closure
process from Ref. [1]. We use the segmented cell bound-
aries in the 5 wing disc wounds found in Ref. [1]. For
the 2 embryo wounds in Ref. [1], we perform our own seg-
mentation procedure by first taking a maximum intensity
projection (Fig. S3a) along the z-axis of confocal micro-
scope z-stack time-series images. Next, we use Tissue
Analyzer [6], an ImageJ plugin for segmentation of single-
layered epithelia, to obtain a first pass segmentation of
the cells and wound (Fig. S3b). Then we make man-
ual corrections to account for under- and over-segmented
regions near the wound, which yields a binary image of
the cell boundaries (Fig. S3c). We employ regionprops
in MATLAB R2022a, Update 5 (Fig. S3d-e) to calculate
the area and perimeter of each unique segmented region,
which we use to report the wound areas and cell shape
parameters A for each time point.
To generate error estimates for the cell shape param-

eter measurements, we carry out a similar process on
synthetic data. We use 26 test shapes: ellipses with ec-
centricities 0.996, 0.987, 0.968, 0.933, 0.872, 0.768, 0.586,
and 0 (circle), polygons with 3 to 12 sides, and 8 differ-
ent 7-sided concave shapes. A subset of the test shapes is
shown in Fig. S4a. We generate images of these shapes
with a range of resolutions (Fig. S4b) and compare the
measured A to the true value At for each shape (Fig.
S4c). We define the fractional error of A as

δA =
At −A

At
. (S7)

For a cell with area a, we report an estimate of δA
using the bounding fractional error E(a) as shown in Fig.
S4c. E(a) is calculated by taking the maximum δA over
all synthetic test shapes at each area, and storing the
running maximum as a function of decreasing area. For
each measurement of the cell shape parameter A for a cell
with area a (px2) in the embryo and wing disc wounding
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experiments, we associate E(a) with the measurement
error in A.

We plot A(t) taking the variance-weighted mean over
cells adjacent to the wound boundary (Fig. S3d), with
error bars given by the standard error of this weighted
mean. Onto the variance-weighted mean and error bars,
we overlay the simulation results as in Fig. 4b in the
main text to show that A(t), from simulations of the
embryo and the wing disc using cells with shape memory,
falls within the margin of error for the A(t) from the
experimental measurements of the embryo and wing disc
wounds.

IV. DERIVATION OF BULK MODULUS

The bulk modulus B of a single cell is related to the
cell area stiffness ka through Eq. 9 in the main text. To
derive this relation, we start with the definition

B = −V
dP

dV
,

where P is the pressure and V is the cell volume. Rear-
ranging, we obtain

dP = −B

V
dV,

and P = B log(V/V0), where V = V0 at zero pressure.
The energy under isothermal compression is given by

Uc =

∫
PdV ′ = BV (log

(
V

V0
− 1

)
+BV0.

To second order in V/V0 − 1, we obtain

Uc ≈
1

2
BV0

(
V

V0
− 1

)2

. (S8)

Comparing Eq. S8 to the shape-energy function (Eq. 1
in the main text), the energy due to compression in two
dimensions is given by

UDP,c =
1

2
kaa

2
0

(
a

a0
− 1

)2

.

Assuming that the energy scale of volume changes is

equal to that of area changes, and that V0 = a
3/2
0 ,

B = ka
√
a0.

V. CONVERTING SIMULATION UNITS TO
PHYSICAL UNITS

Simulation units can be converted into physical units
using three physical quantities that set the mass, length,
and time scales of the simulation. We are able to de-
termine these scales using a choice of force, velocity, and

area (See Table S1.). Atomic force microscopy can deter-
mine single cell forces [7], which allows us to estimate the
unsticking force fadh = 1 nN based on cohesion between
Zebrafish embryo ectodermal cells [8]. We are unaware
of any measurements of fadh on Drosophila embryo ecto-
derm, and we assume that the measurements of fadh on
Zebrafish embryo ectoderm give a reasonable estimate.
We choose ω = 0.3 µm/sec based on a typical actin ring
constriction rate [9, 10]. We find that typical Drosophila
cell areas are a0 ∼ 16 µm2 for the late-stage larval wing
disc epithelium and ∼ 25 µm2 for the late-stage embryo
ectoderm.
We define the unsticking force in our simulations by

fadh = l1ϵNv/3σ
2 with units of ϵ/σ. A factor of Nv/6

comes from the assumption that two cells are adhered
to each other through 1/6 of their membranes on av-
erage, given that a cell has approximately 6 neighbors.
The maximum vertex-vertex adhesion force in Eq. S1 is
2l1ϵ/σ

2, again with units of ϵ/σ.

VI. STIFFNESS ENHANCES SHAPE CHANGE
IN PLASTIC CELLS

To understand how greater stiffness can lead to en-
hanced shape change in plastic cells, we conduct simula-
tions varying the plastic relaxation timescale τ and the
cell area stiffness ka of a single cell experiencing an exten-
sile force dipole (Fig. S5a), i.e. the cell experiences two
equal and opposite forces that generate net zero force.
For elastic-like cells with large τ , we find that increas-
ing ka leads to a reduction in the final A (Fig. S5b),
which matches the expectation that stiffer cells are less
deformable. However, the trend reverses for plastic-like
cells with small τ , as increasing ka leads to an increase
in the final A. We find that stiff, plastic cells are able to
lengthen their membranes without changing their area.
In contrast, soft plastic cells increase their area when
lengthening their membranes, which results in more mod-
est shape changes. These results show that plastic cells
become more deformable as they become stiffer, and cor-
roborates a similar trend in Fig. 3 in the main text.

VII. ALTERNATIVE MECHANISMS
INFLUENCING CELL SHAPE PLASTICITY

Cell shape plasticity, the property of cells allowing
them to retain their new shapes after deformation, is the
result of several mechanisms, which include actin cortex
remodeling, caveolae acting as membrane reservoirs, and
vesicle trafficking processes like exocytosis and endocyto-
sis. These processes are involved in mechanoprotection,
and allow the cell to modulate the cell membrane sur-
face area in response to stress. In our model, a natural
way to incorporate changes in cell membrane surface area
due to membrane reservoirs and vesicle trafficking is to
add plasticity in the membrane rest length. We describe
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cell shape plasticity as membrane plasticity using Equa-
tion 5. A different model for cell shape plasticity could
add plasticity in the equilibrium bending angle of each
membrane segment, which would account for how actin
cortex remodeling contributes to cell shape plasticity in-
dependently of membrane surface area relaxation pro-
cesses. Since curvature is dependent on both membrane
segment lengths and the angles between the segments, we
note that membrane rest length plasticity also includes
relaxation of membrane curvature.
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Simulation quantities Symbol Value
Embryo cell rest area a0 25 µm2

Wing disc cell rest area a0 16 µm2

Unsticking force fadh 1 nN [8]
PS constriction rate ω 0.3 µm/sec [9, 10]

Numerical integration timestep dt∗ 0.1l∗0(0)
√

a∗
0/k

∗
a

DP vertex damping coefficient b∗ 1 (damped)
0 (constant energy)

Number of vertices per DP N∗
v 30

Cell area stiffness k∗
a 0.25, 0.5, 1.0,. . .,256

Membrane length spring constant k∗
l 1

Membrane bending rigidity k∗
b 0.01

Cell rest area a∗
0 1

Initial membrane segment rest length l∗0(0)
√

A4πa∗
0/Nv

Half membrane width σ∗ l∗0(0)/2
Membrane interaction energy ϵ∗ 1
Maximum vertex-vertex adhesion force 2l∗1 0.2
Unsticking force f∗

adh = l∗1Nv/3 1
Plastic relaxation timescale τ∗ = η∗/k∗

l 2.4, 4.8, 9.6,. . .,39322
PS-DP spring constant k∗

p 4
PS-DP spring yield length l∗y 4σ∗

PS constriction rate ω∗ 1
Wound closure rate ωσdA∗/dt∗ — (µm/s)
Cell shape parameter A —

TABLE S1. Default parameters and other quantities used in the deformable particle simulations of wound closure. An asterisk
denotes non-dimensional simulation units. Bolded quantities have physical units and are based on experimental measurements.
If only one parameter value is listed, then the parameter is not varied in our simulation studies.
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FIG. S1. (a) Vertex-segment pair potential energy uint and (b) vertex-segment force fint is plotted against the vertex-segment
distance d for several values of the attraction strength l1/σ. uint, fint, d, and l1 are all nondimensionalized using the half
membrane width σ and membrane interaction strength ϵ. l2 is fixed at 0.3σ for all numerical simulations of wound closure.
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(a)
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FIG. S2. (a) The vertex-segment distance dαi,βj is the shortest distance from vertex α on cell i to line segment l⃗βj on cell

j. If the projection P of d⃗αi,βj to the segment l⃗βj (gray arrow) falls outside of lβj , then dαi,βj is the distance between vertex
α on cell i and vertex β or (β − 1) on cell j. (b) Each deformable particle (left) is modeled as a collection of vertices (dark
blue circles) connected by line segments (cyan region). In the right image, we also show the exterior-facing half of the cell
membrane of a “smooth” deformable particle, which consists of circulo-line segments (cyan) and vertex sectors (blue). Within a
smooth deformable particle, the section around each vertex is considered concave when the angle the vertex makes with its two
neighboring vertices has an interior angle θ > π, and convex otherwise. (c) For locally convex geometries, when a vertex that
overlaps the membrane surface at r⃗contact moves along the indicated trajectory (red line), the vertex-segment distance relative

to l⃗βj is continuous. (d) For locally concave geometries, the vertex-segment distance (relative to l⃗βj) for a vertex overlapping
with the membrane along the trajectory r⃗contact (red line) undergoes a discontinuous jump when crossing the point indicated
by the black star. (e) The wedge-shaped patch (red grid) indicates the region over which the force in Eq. S6 acts to remove
the discontinuity in force that occurs in ∂uint/∂dαi,βj in the case of locally concave membrane geometries. The wedge also
removes a similar discontinuity relative to l(β−1)j .
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(c)
(a) (c)(b)
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FIG. S3. (a) The first step in the image analysis pipeline is to transform raw confocal microscopy images into maximum
intensity projections along the z-axis, shown here for a Drosophila embryo ectoderm immediately after wounding from Ref. [1].
The scale bar has width 10 µm. (b) We next perform automated cell boundary segmentation using Tissue Analyzer [6], an
ImageJ plugin for segmentation of single-layered epithelia. (c) We make manual corrections to cell boundaries near the wound
in each frame. From the segmented cell boundaries, we calculate (d) the cell area a and the wound area, (e) the cell perimeter
p, and (f) the shape parameter A of cells adjacent to the wound. In this example, the wound area is 9048 px2 or 157 µm2.
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FIG. S4. (a) Synthetic data is shown at high resolution: From left to right, then top to bottom: ellipse with e = 0 (circle),
ellipse with e = 0.933, ellipse with e = 0.996, triangle, heptagon, dodecagon, concave shape 1, 4, and 8. The scale bars to the
lower left of each shape are 100 px wide. (b) A shape with an interior angle θ > π is shown at several resolutions. The scale
bars to the lower left of the top four images are 100 px wide, and the scale bars in the bottom two are 10 px wide. The scale bar
sizes in the images vary due to significant changes in the image resolutions. (c) The fractional error in A measured in synthetic
data is plotted versus the number of pixels contained inside the shape over an experimentally relevant range. Estimate of the
error in A as a function of the area of the shape in the synthetic images (blue line). The red and black solid lines represent
the mean areas in the experimental data sets of embryo and wing disc cells, respectively, and the spacings between the dotted
lines represent the standard deviations. (d) We plot A(t) for the embryo (red) and wing disc (black) experiments using the
variance-weighted mean (open circles) over cells adjacent to the wound, where the variance is given by E2(a). We include error
bars using the standard error of the weighted mean. The solid lines are moving averages with the same window size as in Fig.
1b. We overlay the simulation results for the embryo (yellow triangles), the wing disc (cyan triangles), and the wing disc using
cells with shape memory (blue squares), all of which are the same data as in Fig. 4 in the main text.



9

10
-2

10
-1

10
0

10
1

10
-1

10
0

1.1

1.2

1.3

1.4

1.5

1.6

Time t

f-f

t=0

t=T

(a) (b)

FIG. S5. (a) A deformable particle is shown with an extensile force dipole with magnitude f that generates elongation over time
t. (b) Final cell shape A(T ) of the extensile deformable particle as a function of the cell area stiffness k∗

a and the normalized
plastic relaxation timescale τ† = τ/T , where T is the duration of the stretching simulation.
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