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We report an experimental investigation of the caging motion in a uniformly heated granular fluid for a
wide range of filling fractions, �. At low � the classic diffusive behavior of a fluid is observed. However,
as � is increased, temporary cages develop and particles become increasingly trapped by their neighbors.
We statistically analyze particle trajectories and observe a number of robust features typically associated
with dense molecular liquids and colloids. Even though our monodisperse and quasi-2D system is known
to not exhibit a glass transition, we still observe many of the precursors usually associated with glassy
dynamics. We speculate that this is due to a process of structural arrest provided, in our case, by the
presence of crystallization.
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In additional to being of great industrial and geological
importance, granular materials are of fundamental interest
due to their strong nonequilibrium nature [1]. Ensembles of
granular particles are intrinsically dissipative and any dy-
namical study must involve energy injection. These ingre-
dients make the understanding of granular assemblies a
challenging endeavor, and a general theoretical framework
is still lacking. Some progress has been made in the fast
dilute regime [2], treating the system as a nonequilibrium
steady state in which energy injection balances dissipation,
but the dense case remains an open question. One avenue
of research has been to borrow concepts from other dense
particulate systems such as colloids, suspensions, and
emulsions, or even molecular glass formers [3], but
a priori, it is not obvious that such analogies are valid
due to the enormous differences in length scales and the
mechanism of energy supply. However, one common fea-
ture in all of these seemingly disparate systems is the
presence of cages: each particle is temporarily trapped
by its neighbors and then moves in short bursts due to
nearby cooperative motion. This results in highly hetero-
geneous motion and slowing down of the dynamics. In
molecular systems, this behavior is typically observed
indirectly from scattering experiments [4]. In colloids,
however, caging motion has been observed directly
through microscopy, in both 3D [5] and quasi-2D [6]
geometries. A large number of theoretical [7,8] and nu-
merical [9,10] studies have set out to further investigate the
importance of this heterogeneous dynamics. The relevance
of the caging in driven granular materials [11,12] and air-
fluidized particle systems [13] has only recently started to
be addressed. In particular, Dauchot et al. [12] have re-
ported on a granular system driven by cyclic shear where
they observed many ‘‘glasslike’’ features, but for a single
value of the filling fraction.

In this Letter we present a novel dynamical study of a
monodisperse, quasi-2D granular fluid [14], in which the
particles are excited by a spacially uniform stocastic forc-
ing. In our system, the filling fraction, �, can be varied

from a single particle to hexagonal close packing. We have
shown that the structural configurations of this nonequilib-
rium steady state are the same as those of equilibrium hard
disks [14]. In particular, the system does not have an
amorphous dense phase but instead exhibits the following
phase diagram: an isotropic fluid phase �<�l � 0:652, a
crystaline solid phase �>�s � 0:719, and an intermedi-
ate phase �l < �<�s consistent with a hexatic phase
[15]. The phase boundaries, �l (liquidus point) and �s
(solidus point), are determined by structure alone [14].
Here, we explore the dynamics of these phases through
single particle trajectories, focusing on the caging dynam-
ics seen in the intermediate phase. In Fig. 1 we present
typical single particle trajectories for filling fractions in
each of the three phases. Simple fluid behavior is observed
at low �, characterized by random diffusion [Fig. 1(a)].
Above crystallization (�>�s) particles become fully
arrested by their six hexagonally packed neighbors
[Fig. 1(c)]. In the intermediate phase, we see a mixture
of these behaviors [Fig. 1(b)]. At short times, particles are
temporarily trapped in cages formed by their neighbors,
but at long times they diffuse from cage to cage. We will
use the mean square displacement (MSD) and the inter-
mediate scattering function (ISF) to show that the caging

 

FIG. 1 (color online). Experimental frames with superposed
typical trajectories of a single particle: (a) � � 0:567,
(b) � � 0:701, and (c) � � 0:749. Note that even though only
a single trajectory is shown for each �, particle tracking and
statistics were performed over all particles within the imaging
window. The scale bar is 2 mm.
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dynamics seen here is qualitatively identical to that of
dense molecular and colloidal systems [4,5] and super-
cooled liquids [16]. This is surprising since our experiment
is fundamentally different. The associated length scales of
our granular system are typically 3–7 orders of magnitude
larger than those of molecular systems and colloids.
Moreover, the steady states we study are inherently far
from equilibrium since energy is both injected (through
vibration) and dissipated in interparticle inelastic collisions
and frictional contacts.

Our experimental apparatus consists of vertically vi-
brated, D � 1:19 mm diameter stainless steel spheres con-
fined between two 85:3D diameter horizontal glass plates,
separated by 1:6D, which constrain the particle motion to
be quasi-2D. Our system is described in more detail in
[14,17] and improves on Olafsen and Urbach’s similar
system [18] by using a roughened bottom plate. Particle
collisions with the rough surface randomize the horizontal
velocities better than a flat surface and allow us to study a
wide range of filling fractions (1:4� 10�4 <�< 0:8)
[17]. We sinusoidally vibrate the system with a frequency
f � 50 Hz and a maximum acceleration equal to 4 times
gravity, but the structure and dynamics of the system are
independent of the forcing for a wide range of parameters
[17]. To ensure repeatable initial conditions, we start with
all particles hexagonally packed near the boundary. A
steady state is reached by waiting for 12 000 vibration
cycles before 10 seconds of data are acquired. We record
the dynamics in a (12:62� 12:62 mm2) central region
using a high-speed camera at 480 Hz and track the trajec-
tories of all particles.

We first analyze the particle trajectories by measuring
the mean square displacement defined as M�t� � h�r�t� �
r�0��2i, where r�t� is the position of a particle at time t, r�0�
is its initial position, the brackets h:i signify ensemble
averaging over many realizations, and time invariance is
assumed. The MSD for a range of � are shown in Fig. 2.
For the case of a single particle in the cell (curve marked
with� in Fig. 2), the motion at short times is ballistic, and
M�t� 	 t�, where �	 2 (� � 2 for pure ballistic motion).
At later times, the particle moves diffusively and the slope
of M�t� tends to � � 1. This shows that the trajectory of a
single particle is indeed randomized across the cell. For all
�, the motion at early times is superdiffusive with �	 2
showing ballistic motion. For �< 0:719 the motion al-
ways becomes diffusive at long times with M�t� 	 t.
Eventually, this becomes increasingly noisy due to the
lack of statistics in the time averaging. For �> 0:719
the particles are trapped by their six hexagonally packed
neighbors, andM�t� levels off to a constant value set by the
lattice spacing. In the intermediate phase, however, a pla-
teau emerges at intermediate times where the motion is
subdiffusive with 0<�< 1. This plateau appears slightly
before the liquidus point but gradually becomes increas-
ingly visible above �l (marked as 
 in Fig. 2 to aid in
locating the curves in the phase diagram). This represents

the slowing down due to the cage effect shown in Fig. 1(b).
A similar dependence of M�t� has recently been observed
in a quasi-2D system of bidispersed particles fluidized by a
uniform upflow of air [13].

Another classic measure in the study of dense liquid
phases is the intermediate scattering function [4] which is
defined as

 Fs�q; t� �
1

N

X

j

hexp��iq � �rj�t� � rj�0���i; (1)

where q is a wave number and rj�t� is the trajectory of
particle j out of N particles in the system. This measure is
widely used in colloids since it is readily available through
light scattering experiments [4] and is, essentially, a mea-
sure of the time decorrelation of the positional wave vec-
tors. In dense colloids and supercooled liquids, Fs�t; q�
captures the relaxation due to caging in the form of a
two-step relaxation: (1) the fast (early time) � relaxation
which corresponds to the diffusion inside the cage fol-
lowed by (2) the � relaxation corresponding to the time
it takes for the particle to diffuse out of the cage.

In Fig. 3 we plot Fs�t� for the wave vector qD � 2:14
(q � 1:8 mm�1) for various values of �. As expected, in
the crystal phase (�> 0:719) Fs levels at a value close to 1
and little decorrelation occurs, since each particle is fully
trapped. In the fluid phase, Fs rapidly decays as particles
move across the cell diffusively and the initial positional
wave vector quickly decorrelates. In the intermediate phase
we observe the classic � and� two-step relaxation; there is
a clear intermediate plateau and the � relaxation occurs at
increasingly longer time scales, as � is increased. As for
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FIG. 2 (color online). Time dependence of the MSD for filling
fractions shown in the box. The curve marked with � is for a
single particle in the cell. The arrow points in the direction of
increasing �. Along the arrow, the symbols (
) and (�) are lo-
cated at �l and �s, respectively, to aid locate the curves in the
fluid’s phase diagram. The horizontal line at 9:954 mm2 corre-
sponds to the square of 1=4th of the linear dimension of the
imaging window, above which finite system size effects become
important.
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the MSD before, this two-step relaxation becomes particu-
larly visible above the liquidus point, even though it can
already be seen just before�l (marked as 
 in Fig. 3 to help
locate the curves in the phase diagram). For each value of
�, the � relaxation at late times is well described by a
stretched exponential of the form

 Fs�q; t� 	 expf��t=��q����q�g; (2)

where ��q� is a relaxation time and the stretching exponent
is typically ��q� � 1. Fits of this stretched exponential
form to the experimental data are shown as solid lines in
Fig. 3. It is interesting to note that this behavior is in good
agreement with the predictions of mode coupling theory
(MCT) [7]. This is highly surprising since MCT has been
developed for thermal fluids and is not known to apply to
nonequilibrium systems such as ours.

We now focus on the q dependence of both the relaxa-
tion time ��q� [Fig. 4(a)] and the exponent��q� [Fig. 4(b)],
for various values of�. We defined ��q� as the time it takes
for the experimental curves of Fs to fall to a level of 1=e,
i.e., Fs��� � 1=e. The stretching exponent ��q� is the local
slope of the quantity log�� log�Fs�� in the neighborhood of
�. At low filling fractions, the scaling with � with q is
consistent with �	 q�2. As the filling fraction is in-
creased, this scaling continues to hold but only up to a
cutoff value above which (length scale below which) it
sharply drops. This cutoff length scale can be associated
with a characteristic size of the cage, which becomes
increasingly smaller as � is increased. On the other
hand, �, the local exponent, tends to one at small q but
decreases progressively below one for higher filling frac-
tions and Fs becomes increasingly stretched. These find-
ings can now be combined and interpreted as follows. For

small q (i.e., large length scales), if �	 q�2 and��q� ! 1,
together they imply that Fs�q; t� 	 exp��Dq2t�. This is the
result for classical diffusion [12]. For large q (i.e., small
length scales) this Brownian scaling breaks down to a
stretched exponential with �< 1, which can attributed to
the presence of dynamic heterogeneities due to caging.

Returning to the case of fixed qD � 2:14, we plot � as a
function of � in Fig. 5. A significant slowing down of the
dynamics can be seen at high � as crystallization is ap-
proached. It is highly surprising that this slowing down
with � is well described by the Vogel-Fulcher law [19] as
found in many glass forming systems,

 �	 exp�A=��c ����; (3)

where A � 0:094 0:004 is a fitting parameter but �c �
0:719 0:007 is the filling fraction for crystallization
which was determined independently from experiments
[14]. A power-law fit was not as satisfactory. Note that,
as the fluid goes through the transition from isotropic fluid
to the intermediate phase (at �l � 0:652), � shows no
particular feature. This functional dependence of the re-
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FIG. 3 (color online). Time dependence of the intermediate
scattering function, with qD � 2:14, for various filling fractions
(numerical values of � given in the box). The arrow points in the
direction of increasing �. Along the arrow, the symbols (
) and
(�) are located at �l and �s, respectively, to aid locate the
curves in the fluid’s phase diagram. The solid lines are fits to
Eq. (2).
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FIG. 4 (color online). (a) Wave vector dependence of the
relaxation time, �, and (b) local stretching exponent, �, for
various values of filling fraction. The arrows point in the direc-
tion of increasing �, and the numerical values of � are given in
the boxes. Along the arrow, the symbols (
) and (�) are located
at �l and �s, respectively.
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laxation has also recently been found within the granular
context by Fierro et al. [20] in a numerical lattice model.

In summary, we have studied the dynamics of a uni-
formly heated granular fluid. We have observed a number
of features typically associated with dense liquid behavior
in molecular and colloidal systems, namely: prominence of
cages, development of a plateau in the MSD and ISF with
the breakdown of the Brownian diffusive behavior, and a
Vogel-Fulcher relaxation. Even though the emergence of
the plateaus and the relaxation time grow smoothly past the
liquidus point, they become particularly visible for � �
�l. In particular, our results can be directly compared to
both experiments [6] and simulations [10] of quasi-2D
colloidal particles. This is surprising since our experiment
is fundamentally different: it is intrinsically far from equi-
librium since energy is not conserved, the constituent
particles are macroscopic, and it is known that for mono-
disperse and quasi-2D systems such as ours there is no
ideal glass transition [21] (the phase diagram is fluid,
intermediate phase, and crystal). In the absence of an
amorphous structural glass, we propose that the spatially
uniform stochastic way of injecting energy along with a
process of structural arrest provided by crystallization [14]
are at play to account for the many observed similarities.
This suggests that theoretical frameworks previously de-
veloped for dense thermal liquids, for example, MCT [7],
might shed some light to the description of excited granular
materials.
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FIG. 5 (color online). Relaxation time, �, extracted from the
intermediate scattering function as a function of filling fraction.
The solid line is a fit to the Vogel-Fulcher law of Eq. (3). Dashed
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