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Using magnetic resonance imaging, we examine the onset and stability of porous media convection
(PMC) in packings of solid spheres. Nominally, PMC resembles Rayleigh-Bénard convection, except
that there should be no vertical vorticity. We find pinned defects in convection patterns for disordered
sphere packings. Roll-like structures form in regularly packed media, with rapid relaxation to stable
patterns within the expected stable range. The size of up flow regions decreases relative to down flow
regions with increasing Rayleigh number, producing a novel time dependent state for Ra/Ra, > 6.

PACS numbers: 44.30.+v, 47.20.Bp, 47.54.+1

Nonlinear pattern forming systems have been the
subject of considerable recent interest [1]. An intensively
studied example [2] is Rayleigh-Bénard convection
(RBC): a thin horizontal layer of fluid is heated from
below creating a temperature difference AT across a
layer of height d. Buoyancy overcomes dissipation at
AT = AT,, corresponding to a critical value Ra, of the
Rayleigh number Ra.

An analogous form of convection, porous media con-
vection (PMC), or Horton-Rodgers-Lapwood convection
[3], can occur for a fluid-saturated matrix [4]. In the lab-
oratory, the matrix is often a packing of spherical parti-
cles, but many other matrix geometries are possible [5].
PMC belongs to a class of flows which have substantial
technical relevance [6], and it is interesting as a nonlinear
pattern forming system.

PMC has a number of features in common with
RBC. PMC is expected to occur via a forward pitchfork
bifurcation at a critical Rayleigh number to a flow
consisting of rolls with a well-defined wave number g =
q.(= ). Within a well-defined region in Ra-g space,
straight parallel PMC rolls are expected to be stable and
outside that region to be subject to instabilities [7,8] that
have parallels in RBC.

Several features distinguish PMC from RBC. Flows
in porous media are typically described by Darcy’s law,
this is intended to represent the average properties of
the flow on a scale which is large compared to the
pore size. By contrast, RBC is described by the Navier-
Stokes equations. Spatial variations in the matrix can
lead to variations in Ra which are usually absent in RBC.
These variations can lead to anisotropy and to localized
regions of enhanced convection [9]. Consequently, this
system has a novel feature which clearly distinguishes it
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from RBC and introduces the possibility of new kinds of
dynamics [10].

The solid matrix also makes visualization of the flow
very difficult. Until recently [5], experiments [11,12]
either did not effectively achieve visualization or achieved
it at the price of large perturbations to the system. To our
knowledge, this work presents the first nonperturbative,
quantitative, imaging of the horizontal convection pattern
in a conventional PMC experiment consisting of packed
spheres and the only velocity determination, regardless of
the solid matrix. We use magnetic resonance imaging
(MRI) [13], which permits the visualization of the local
density, velocity, and temperature of a fluid consisting
of molecules with unpaired nuclear spins, such as water.
Here we present results for the local velocity of the flow.

The dynamics of PMC for homogeneous isotropic
media are typically described [14] by Darcy’s law (with
an acceleration term), by a heat equation, and by an
equation of continuity. The first of these is

(p/p)ovar = —B[VP + (n/y)v] + pg. (1)

Here B is a dimensionless acceleration coefficient, as-
sumed to be ~1, vy is the medium permeability, ¢ is the
porosity, and p and n are the fluid density and viscosity,
respectively. In the usual Boussinesq approximation, p in
the term pg is assumed to be a linear function of temper-
ature. For a random packing of spheres [15] of diameter
8, 7 is typically represented by v = 82¢3/150(1 — ¢)>.

In dimensionless form, these equations contain two
parameters: the Prandtl number

Pr = v/k 2)
and the porous Rayleigh number
Ra = agdyAT/vk. 3)
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Here o and » are, respectively, the fluid isobaric ther-
mal expansion coefficient and kinematic viscosity. « is
an effective thermal diffusivity with contributions from
the fluid and matrix. The porous Rayleigh number differs
from the RBC counterpart by a factor of the Darcy num-
ber Da = y/d?. If the solid matrix is not isotropic, terms
involving ¥ and « must be replaced by tensor expressions
[8], g # 7, and the region of stable convective states in
the Ra-g plane typically changes [7].

The z component of the curl of Eq. (1) yields the
dynamics of the vertical vorticity €),:

00/t = —(Bvd/v)Q;. 4)
€}, decays exponentially, independently of the other
dynamics, with a time constant 7o, = y/Bv¢ =
(Da/BPr¢p)d?/ k. Typically  (i.e., water with
6 = 1 mm), 79, = 5 ms. The next fastest time in the
system is the vertical thermal diffusion time 7, = d?/«k,
which is typically ~10% to 10%s (1560 s for these
experiments). The Darcy description implies no vertical
vorticity after the rapid decay of any initial transients. By
contrast, vertical vorticity occurs in RBC and is related to
the complex dynamics observed for low to moderate Pr
fluids [16—-18]. Because ), = 0 is predicted for Darcian
convection, we might expect that such states would be
absent for this system.

The Darcy description assumes that the pore scale
satisfies 6 < d, i.e., Da < 1. But, in experiments,
6 cannot be made very small without requiring very
large temperature differences, since AT « Ra/y o« § 2.
And if d is made large, for instance d > 1 cm, then
the thermal relaxation times become prohibitively large.
In reality, only the condition 6 < d can be met. For
instance, an order of magnitude decrease in 6/d would
require either an unacceptible increase of the onset AT by
2 orders of magnitude or a correspondingly large increase
in the relaxation times. Although other changes in d
and/or & are possible, experiments in general on porous
convection for sphere packings (or similar structures)
and typical fluids cannot operate in the limit §/d —
0. Consequently, Darcy’s law, Eq. (1), may need to
be modified. We are unaware of rigorous substitute
models for Darcy’s law under these circumstances, but
one possibility may be to allow the parameters, such as vy,
to be functions of space. In that event, Eq. (4) no longer
applies, and interesting new dynamics are possible [9,10].
Some experimental information concerning &/d does
exist. Close, Symmons, and White [11] find that critical
Rayleigh numbers are not strongly affected by small &/d
even when this quantity is ~2. However, experimental
tests of pattern selection are lacking, and the applicability
of the Darcy formalism has generally been unverified.
The present experiments indicate which predictions of the
Darcy formalism are actually manifested in experiment.

The experiments are carried out using a specially de-
signed cell (see inset, Fig. 3) for use in an MRI environ-
ment that does not allow the use of electrically condition-

ing materials or media with large variations of magnetic
susceptibility. The porous medium consists of monodis-
perse plastic beads of diameter 3.2 mm sandwiched be-
tween two aluminum nitride (AIN) plates. The fluid is
pure water. AIN is an electrical insulator but has high
thermal conductivity, about % that of copper. Tempera-
tures on either side of the layer are maintained to better
than 5 mK (compared to AT, = 10 K) by independent
circulating water baths. The sidewalls are made of Del-
rin. The cell can be easily inserted into a horizontal-bore
2 T MRI magnet. A computer controls the experiment
and carries out a sequence of temperature steps and MRI
scans. Details of the MRI technique are given elsewhere
[19]. We have obtained heat transport data for some runs
by replacing one of the AIN plates by a thin sandwich
consisting of a sheet of plastic between two sheets of AIN.
The temperature drop across the thin sheet, as well as the
temperature drop across the fluid-saturated matrix, yields
the heat transport, and hence the Nusselt number N de-
fined as the heat flux across the fluid normalized by the
conductive heat flux. N = 1 for Ra < Ra, and N grows
as the convective strength increases.

We consider first results for a cell with cylindrical
side walls and a disordered packing obtained by pour-
ing spheres into the convection layer. The aspect ratio
I" = radius/d = 5.00. In fact, this packing has short-
range order consisting of spatially ordered regions which
are smaller than the cell, separated by defects in the pack-
ing pattern such as grain boundaries. A typical image
showing the vertically averaged vertical velocity is given
in Fig. 1. Bright patterns corresponds to upflow and dark
to down flow. The convection patterns consist of disor-
dered roll-like structures. Convection begins first in re-
gions where there are packing defects because they tend

FIG. 1. MRI velocity images of convection in a cylindrical
container of aspect ratio radius/d = 5.00. The packing is
disordered. These images give the vertical velocity averaged
over the thickness of the layer. Upflows are lighter and
downflows are darker.
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to increase the local permeability. This is in qualitative
agreement with the calculations of Zimmermann, Seessel-
berg, and Petruccione [9] who considered random vari-
ations of Ra on the Swift-Hohenberg model. Even at
higher Ra, where convection is fully developed through-
out the container, the packing defects often remain as pin-
ning sites of the convection pattern. The roll patterns dif-
fer qualitatively from those seen in RBC since rolls are
not necessarily forced to be normal to the side walls.

We next consider convection in a layer with a hexagonal
planform. This geometry was chosen because it is defect-
free within the interior, and it allows a sphere packing
that is identical at all the side walls. Within each layer,
the beads are close packed in a regular triangular pattern.
Four layers of beads are stacked in a vertical packing
order ABCA to form a matrix with an aspect ratio I' =
L/d = 9.05, where L is the greatest distance between
points of the hexagon. This packing is essentially free
of defects except at the edges, where there is a periodic
variation of the local properties. Figures 2(b)—(f) show
typical steady convection patterns obtained for this cell.
For Figs. 2(b) and 2(c) Ra/Ra,. = 3.0; Figs. 2(d)-2(f)
are representative patterns found on recycling through
onset, all at Ra/Ra, = 2.0. Figure 2(a) shows a pattern
at Ra/Ra, = 8.0 where time dependence has set in.
Approximately parallel rolls fill the cell. However, the
rolls may curve and need not be of uniform width; rolls can
pinch or terminate within the interior of the cell. As with
the previous container, convection occurs first in regions of
locally high porosity, in this case along the sidewall. The
convection near the walls consists of a nearly regular array
of very narrow rolls having a significantly larger g than
the primary pattern. The well rolls appear to have only a
limited influence over the forcing of the main pattern.

FIG. 2. MRI velocity images for a hexagonal cell. (a) A
typical time-dependent state at Ra/Ra,. = 8.0 (b),(c) Relax-
ation following a quench from Ra/Ra, = 8.0 of part (a) to
Ra/Ra, = 3.0. Part (b) was acquired 27, after the quench
was made; part (c) was acquired 1007, later and is almost
identical to (b). (d)—(f) Representative steady convection pat-
terns all for Ra/Ra,. = 2.0. Each of (d)—(f) corresponds to a
different cycling through the onset of convection.
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The Nusselt number for the hexagonal sidewalls is
given in Fig. 3. This quantity shows a relatively sharp
transition to convection. The arrows to the right and left
show, respectively, where the side rolls are first detected
and where convection can first be discerned in the interior.
The slope S = Ra.dN/dR = 0.73 is smaller than the
predicted value [8] S = 2 for homogeneous isotropic
media but in accord with other experients of comparable
8/d [11].

For isotropic porous media, the dimensionless wave
vector of the rolls is predicted to be 7, corresponding
to rolls of width d. The rolls are clearly somewhat larger
than d, and we estimate ¢ = 0.77 over a large range of
Ra. Also, the width of the upflow rolls, Ay, differs from
that for the downflow rolls, Agown, €Xcept near onset. The
ratio Ay / Adown decreases with Ra, as shown in Fig. 4.

We turn now to the time evolution of the patterns.
Above Ra/Ra, = 6, the patterns evolve continuously
with time. Small regions of intense upflow wander inside
a large sea of weaker downflow [Fig. 2(a), for Ra/Ra, =
8.0] over times of at least several days, i.e., for as long
as we have observed them. These times are of order of
the horizontal diffusion time L?/k. This state does not
obviously resemble predicted wave shapes [7,8] for the
instabilities that destabilize parallel rolls (i.e., oscillatory,
cross roll or skew varicose instabilities).

If Ra is quenched rapidly from ~8Ra, to Ra =
3.0Ra,, relaxation of the pattern to a steady state is
obtained in a relatively short time, as seen in the time
sequence of Figs. 2(a)—(c). Part (a) shows the time-
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FIG. 3. Nusselt number vs (Ra — Ra.)/Ra, for the hexago-

nal cell. The arrow to the left indicates when narrow convec-
tion rolls first form along the side walls. The arrow to the right
indicates when the MRI first detects convection in the interior
of the cell. Inset: Schematic of the convection cell used in
the MRI apparatus. The convection layer is indicated by small
circles.
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FIG. 4. Ratio of the upflow roll width Ay, to the downflow
roll width Agown vs (Ra — Ra.)/R.. The various symbols
represent four different experimental runs.

dependent state at Ra/Ra,. = 8.0, just before the quench;
part (b) shows the state at Ra/Ra. = 3.0 about 27, after
the quench; part (c) shows the pattern is then virtually
unchanged after waiting 1007, longer. Quenches of this
type [20] are useful because they test for the existence
of time-dependent states in the regime in which only
steady states are expected but whose basins of attraction
may not be encountered if Ra is ramped slowly. Similar
quenches ending at Ra/Ra,. = 2.0,4.0, and 6.0 produce
rapid relaxation to patterns which are steady, except
possibly near the boundary, for times up to several days.
We conclude that there is a substantial range in Ra
characterized by rapid relaxation to steady-state flows.
This is consistent with the expectations discussed above,
assuming that Darcy’s law applies.

We conclude with the following points. The present
experiments have shown that steady convective states
in a porous medium consisting of packed spheres exist
for moderate I' and a range of Ra, which is consistent
with predictions. Approximately parallel roll states are
obtained only when the packing is regular; otherwise,
defects produce pinning and irregular patterns. There
are several observations that cannot be explained in the
context of existing theory. These include the lower-
than-expected wave vector, the broken symmetry of up-
and downflows, and the time-dependent states obtained
at large Ra. 1In all of these effects, the structure of the
sphere packing presumably plays a important and largely
unexplored role. In particular, there is little theory to
address the experimentally relevant regime in which the
pore scale is not microscopically small.
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FIG. 1. MRI velocity images of convection in a cylindrical
container of aspect ratio radius/d = 5.00. The packing is
disordered. These images give the vertical velocity averaged
over the thickness of the layer. Upflows are lighter and
downflows are darker.



FIG. 2. MRI velocity images for a hexagonal cell. (a) A
typical time-dependent state at Ra/Ra, = 8.0 (b),(c) Relax-
ation following a quench from Ra/Ra,. = 8.0 of part (a) to
Ra/Ra. = 3.0. Part (b) was acquired 27, after the quench
was made; part (c) was acquired 1007, later and is almost
identical to (b). (d)-(f) Representative steady convection pat-
terns all for Ra/Ra, = 2.0. Each of (d)-(f) corresponds to a
different cycling through the onset of convection.



