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The mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic
simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure p,
the ensemble-averaged static shear modulus hG −G0i scales with pα, where α ≈ 1, but above a
characteristic pressure p��, hG − G0i ∼ pβ, where β ≈ 0.5. However, we find that the shear modulus
Gi for an individual packing typically decreases linearly with p along a geometrical family where the
contact network does not change. We resolve this discrepancy by showing that, while the shear modulus
does decrease linearly within geometrical families, hGi also depends on a contribution from discontinuous
jumps in hGi that occur at the transitions between geometrical families. For p > p��, geometrical-family
and rearrangement contributions to hGi are of opposite signs and remain comparable for all system sizes.
hGi can be described by a scaling function that smoothly transitions between two power-law exponents α
and β. We also demonstrate the phenomenon of compression unjamming, where a jammed packing unjams
via isotropic compression.
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Athermal particulate materials, such as static packings of
granular materials [1,2] and collections of bubbles [3] and
emulsion droplets [4–6], can jam and develop solidlike
properties when they are compressed to packing fractions ϕ
above jamming onset. When systems are below jamming
onset ϕ < ϕJ, they possess too few interparticle contacts to
constrain all degrees of freedom in the system Nc < Niso

c
[7], and they display fluidlike properties with zero static
shear modulus. In systems composed of N spherical
particles with purely repulsive interactions, no static
friction, and periodic boundary conditions, Niso

c ¼ dN0 −
dþ 1 [8], where d is the spatial dimension, N0 ¼ N − Nr,
and Nr is the number of rattler particles that do not belong
to the force-bearing contact network [9]. Several groups
have carried out computational studies to understand the
structural and mechanical properties of jammed particulate
solids with ϕ > ϕJ [10–14]. These studies find that the
ensemble-averaged contact number hzi ¼ 2hNci=N and
static shear modulus hGi obey power-law scaling relations
in the pressure p as it increases above zero at jamming
onset [15]:

hzi − ziso ∝
�
pα p < p�

pβ p > p�;
ð1Þ

hG −G0i ∝
�
pα p < p��

pβ p > p��;
ð2Þ

where hG0i ∼ N−1 is a nonzero constant when the shear
modulus is measured at constant volume. The crossover
pressures that separate the low and high pressure regimes,
p� ∼ p�� ∼ N−1, the scaling exponents, α ≈ 1 and β ≈ 0.5,
are the same for hzi − ziso and hG −G0i, and do not depend
sensitively on d and form of the purely repulsive interaction
potential [11].
Despite this work, there are many open questions

concerning the power-law scaling relations near jamming
onset. First, why do the scaling exponents α and β that
control the mechanical properties of jammed packings take
on their particular values? Studies [16] have suggested that
β originates from the near contacts represented in the
divergent first peak of the radial distribution function [17]
near jamming onset. However, interparticle contacts both
form and break as the system is compressed above jamming
onset [8]. Second, recent studies [18] have demonstrated
the importance of geometrical families of jammed pack-
ings. Geometrical families are sets of jammed packings that
have the same contact network, but possess different
packing fractions at jamming onset, and can be continu-
ously transformed into one another via applied deforma-
tions. We recently found that the shear modulus of
individual jammed packings typically decreases with
increasing p within geometrical families [19]. This result
is at odds with the ensemble-averaged behavior, where hGi
increases with p at nonzero pressures. Thus, additional
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studies are required to understand the critical behavior of
the mechanical properties of jammed solids near ϕJ.
Here, we show that the shear modulus Gi for an

individual jammed configuration i typically decreases
linearly with increasing pressure p as Gi ¼ Gi

0 − λip along
geometrical families, where λi > 0. As p is increased
further, one of two things happens: (a) the packing
eventually becomes mechanically unstable, and a particle
rearrangement occurs, or (b) the packing remains stable,
but gains a new contact due to overcompression pushing
particles closer together. Both of these events cause a
discontinuous jump in Gi. After this jump, the system
moves along a new geometrical family as it is compressed
until another rearrangement occurs, and this process
repeats. We find that the pressure dependence of the
ensemble-averaged shear modulus hGi is determined by
two key contributions: the linear decrease in pressure from
geometrical families, and discontinuous jumps from par-
ticle rearrangements or added contacts. We identify a
physically motivated scaling function that accurately
describes hGi over a wide range of pressures and system
sizes. In addition, we find that jammed packings can unjam
after applying isotropic compression.
Our derivation of the shear modulus of a single jammed

packing undergoing isotropic compression and simple
shear along a geometrical family is based on energy
conservation: −pdLd − ΣxyLddγ ¼ dU, where Ld is the
volume of the simulation cell, γ is the shear strain, and dU
is the change in potential energy. Using dLd=Ld ¼ −dϕ=ϕ,
we find that the shear stress along a geometrical family has
two contributions:

−Σxy ¼
1

Ld

dU
dγ

−
p
ϕ

dϕ
dγ

: ð3Þ

The shear modulus is equal to the derivative of −Σxy with
respect to γ at constant volume, which gives

Gi ¼ 1

Ld

d2U
dγ2

−
p
ϕ

d2ϕ
dγ2

: ð4Þ

Defining Gi
0 ≡ L−dd2U=dγ2 and λi ≡ ϕ−1d2ϕ=dγ2, we

find

GiðpÞ ¼ Gi
0 − λip: ð5Þ

Prior results for jammed disk packings have shown that
λi > 0 in the limit p → 0 [18]. Here, we study a wide range
of pressures and packings of spheres, as well as disks, and
find again that λi < 0 is extremely rare. (See Supplemental
Material [20].)
We computationally generated packings of frictionless,

bidisperse disks and spheres (half large and half small) with
a diameter ratio r ¼ 1.4 in cubic cells with periodic
boundary conditions over a range of system sizes from
N ¼ 6 to 1024. The particles interact via the purely
repulsive linear spring potential:

UðrijÞ ¼
ϵ

2

�
1 −

rij
σij

�
2

Θ
�
1 −

rij
σij

�
; ð6Þ

where rij is the distance between particles i and j,
σij ¼ ðσi þ σjÞ=2, σi is the diameter of particle i, ϵ is the
characteristic energy scale, and the Heaviside function
ensures that particles interact only when they overlap. We
measure energy in units of ϵ and stress and shear modulus in
units of ϵ=σdS, where σS is the diameter of the small particles.
Our first approach to understanding the power-law

scaling of the shear modulus is to map out the pressure
of individual packings vs ϕ and γ as shown in Fig. 1.
Particles are initially placed at random in the simulation cell
in the dilute limit at γ ¼ 0. The system is then compressed
in small packing fraction increments. After each step we
minimize the total potential energy U ¼ P

i>j UðrijÞ with
respect to the particle positions using the FIRE algorithm [26]
until the system has a total net force satisfying

ð∇⃗U=NÞ2 < 10−32. This initial compression protocol pro-
ceeds until ϕ ¼ ϕi, where ϕi is less than the lowest ϕJ
at γ ¼ 0 for each system size. After reaching ϕi, we
generate 103 minimized configurations each separated by

FIG. 1. A contour plot of the pressure p as a function of shear strain γ and packing fraction ϕ originating from a single packing of
bidisperse disks with γ ¼ 0 and the following system sizes and initial packing fractions: (a) N ¼ 6, ϕi ¼ 0.77, (b) N ¼ 32, ϕi ¼ 0.79,
and (c) N ¼ 64, ϕi ¼ 0.80. White regions correspond to unjammed packings with p ¼ 0, and p increases from dark blue to maroon. In
(b), moving from points A to B [i.e., from (0.46,0.837) to (0.46,0.841)] indicates an instance of compression unjamming.
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Δϕ ¼ 7 × 10−5. Then, we apply an affine simple shear strain
to the packing at ϕi, such that the new positions satisfy x0i ¼
xi þ Δγyi with Δγ ¼ 10−3, coupled with Lees-Edwards
boundary conditions, followed by energy minimization.
We then repeat the compression process at the new value
of shear strain.
Figure 1 shows several striking features. First, the ϕ-γ

parameter space can be described by smooth, continuous
pressure regions corresponding to geometrical families,
separated by discontinuous transitions between them.
Discontinuities in pressure that occur as a function of ϕ
and γ coincide with changes in the interparticle contact
network. Second, there are regions where the system is
unjammed at a higher packing fraction than a jammed
configuration at the same γ. This result implies that it is
possible to unjam a jammed packing through isotropic
compression. See points A and B in Fig. 1(b). This counter-
intuitive result can be understood from the fact that com-
pression steps change the relative angles between bonds
connecting overlapping particle centers. If shifts in the
contact network during compression cause a mechanical
instability, it can induce a rearrangement to a configuration
with a ϕJ that is larger than the current packing fraction.
Compression unjamming occurs over a range of packing

fractions similar to that obtained by quasistatically com-
pressing systems from the dilute limit to jamming onset. It
is well known that for this protocol the standard deviation
of the distribution of jamming onsets PðϕJÞ narrows as
Δ ∼ N−Ω, where Ω ∼ 0.55, with increasing N [27]. Even
though the length in shear strain of the continuous
geometrical families decreases with system size, we find
that, for sheared packings, the probability for compression
unjamming (averaged over a fixed γ) is independent of
system size in the large-N limit. Moreover, we find that for
packings generated at fixed γ ¼ 0 and compressed above

jamming onset, the probability for compression unjamming
approaches a nonzero value in the large-N limit. (See
Supplemental Material [20].)
To investigate how geometrical families influence the

ensemble-averaged shear modulus, we computed Gi vs
pressure for Ne jammed disk and sphere packings over a
range of system sizes. We varied Ne from 5000 for N ¼ 64

to 1000 forN ¼ 1024. We generated packings at 103 values
of p, logarithmically spaced between 10−7 and 10−2.
To identify rearrangements, we computed the network
of force-bearing contacts for every packing at all pres-
sures, using the method described in the Supplemental
Material [20].
To determine the shear modulus Gi, we apply positive

simple shear strain, typically Ns ¼ 20 steps with size
Δγ ¼ 5 × 10−9, each of which is followed by potential
energy minimization, to each packing at each p. We have
verified that our results for Gi do not depend on the values
of Ns and Δγ. To measure linear response even at finite γ,
we assume that contacting particles interact via the double-
sided linear spring potential [i.e., Eq. (6) without the
Heaviside function] and do not include new contacts that
form during the applied shear strain. At each γ, we calculate
the shear stress using the virial expression [18,28]:

Σxy ¼ L−d
X
i>j

fijxrijy; ð7Þ

where fijx is the x component of the force on particle i due
to particle j, and rijy is the y component of the separation
vector pointing from the center of particle j to the center of
i. We fit the shear modulus to a parabolic form in γ, and
calculate Gi as −dΣxy=dγ evaluated at γ ¼ 0.
In Fig. 2(a), we show Gi vs p on a linear scale for

individual packings of disks and spheres. These results
verify the prediction in Eq. (5)—along each geometrical

FIG. 2. (a) Shear modulus Gi for individual packings vs pressure p for N ¼ 64 (blue asterisks) and 512 (red squares) disks, and 64
spheres (pink triangles). Best-fit lines are plotted in black for some of the geometrical families. Note that some packings are unstable
with Gi < 0. (b) In black, we plot the shear modulus Gi for ten individual packings of N ¼ 64 disks vs p using logarithmic axes.
(Gi < 0 are omitted.) In blue, we plot the ensemble-averaged shear modulus hGi vs p for 5000 packings.
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family,Gi decreases roughly linearly with p. The regions of
linear decreases in p are punctuated by discontinuous
jumps in Gi as pressure increases. The jumps in Gi always
correspond to either rearrangements in the force-bearing
contact network, or added contacts from compression.
Figure 2(b), which plots Gi and hGi vs p on logarithmic
axes, demonstrates that the shear modulus of individual
packings can linearly decrease along geometrical families,
while at the same time, the ensemble-averaged shear
modulus is nearly constant with pressure for small p,
and then scales as p1=2 at the largest pressures. The
discontinuous jumps in Gi from rearrangements give rise,
on average, to increases in Gi. Since the jumps in Gi trend
upward, they counteract the linearly decreasing behavior of
Gi within individual geometrical families, causing a net
increase in hGi with p for the ensemble average.
To understand the relative contributions of geometrical

families and rearrangements to the shear modulus, we
decomposed it into three contributions: one from the
lowest-pressure (first) geometrical family Gi

f, one from
rearrangements Gi

r, and one from changes in the param-
eters, Gi

0 and λi, between geometrical families, Gi
s. Hence,

Gi ¼ Gi
f þ Gi

s þ Gi
r. We show the ensemble-averaged

first-geometrical-family and change-in-family contribu-
tions, hG − Gri ¼ hGf þGsi in Fig. 3(a) for packings of
disks and spheres. When the discontinuous jumps are
removed, the ensemble-averaged shear modulus decreases
linearly with p with slope hλi determined by the first
geometrical families. Thus, hGsi ≈ 0 for jammed packings
of spherical particles at low pressure. We fit hGf þ Gsi to
hG0i − hλip, and plot hG0i and hλi vs N in the inset to
Fig. 3(a). We find that hG0i ∼ N−1, consistent with pre-
vious results, and hλi ∼ N.

In Fig. 3(b), we plot the ensemble-averaged hGri,
jhGf þ Gsij, and hGi vs p for N ¼ 128 disks. The cusp
corresponds to p at which hGf þGsi switches from
positive to negative. For small p, the first-geometrical-
family contribution dominates hGi. At intermediate pres-
sures, hGf þ Gsi ≈ 0, and the rearrangement contribution
dominates, hGi ∼ hGri. However, at the largest pressures,
hGf þ Gsi is large in magnitude, but negative, and both
hGf þ Gsi and hGri determine hGi. These results hold for
all N.
We show that both hGf þGsi and hGri are well

described by functions that smoothly transition between
two power laws as p increases:

hGfðpÞ þ GsðpÞi ¼ hḠ0i þ
āpd

1þ c̄pd−e ; ð8Þ

hGrðpÞi ¼
ā0ðp − bÞd0

1þ c̄0ðp − bÞd0−e0 ; ð9Þ

where ā, ā0, c̄, and c̄0 are positive coefficients, and d, d0, e,
and e0 are positive exponents. We offset hGrðpÞi by b > 0
in p because hGrðpÞi ¼ 0 for all pressures below that
corresponding to the first rearrangement. We find that the
transition between the two power laws (e.g., from expo-
nents d to e) occurs over the same pressure interval for both
hGf þ Gsi and hGri, which suggests a qualitative change in
the nature of rearrangements and potential energy land-
scape above and below the crossover pressure p��.
After fitting hGf þ Gsi and hGri to Eqs. (8) and (9), we

obtain the scaling function for hGi by adding the two
contributions.However, since hGf þ Gsi and hGri transition
between two similar power laws over the same range ofp, we

FIG. 3. (a) The sum of the ensemble-averaged first-geometrical-family and change-in-family contributions hGf þ Gsi to hGi for
N ¼ 64 (blue squares), 128 (red asterisks), 256 (yellow triangles), and 512 (purple circles) disk packings, and N ¼ 64 sphere packings
(pink stars). Inset: We fit hGf þGsi to hG0i − hλip and show hλi (asterisks) and hG0i (plus signs) for disk packings vs N. (b) For
N ¼ 128 disks, we plot the absolute value of the sum of the ensemble-averaged first-geometrical-family and change-in-family
contributions to hGi, jhGf þ Gsij (yellow), and ensemble-averaged rearrangement contribution to hGi, hGri (red), which are fit to
Eqs. (8) and (9), respectively (black). hGi ¼ hGf þGs þ Gri is shown in blue.
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can approximate hGi as a single function that transitions
between two power laws, rather than a sum of two functions
that separately transition between two power laws. Thus, we
model hGi using Eq. (8), but with different coefficients and
exponents: hGi ¼ hG0i þ apα=ð1þ cpα−βÞ. This scaling
form is shown on top of the ensemble-averaged hGi for
jammed disk and sphere packings in Fig. 4, where α and β vs
N are given in the inset. As found previously, the exponent
that predominates at larger pressures tends toward β ¼ 0.5,
and α ≈ 1 predominates at lower pressures. The crossover
pressure p�� ∼ N−1 decreases with increasing system size.
We have shown that the ensemble-averaged power-law

scaling of the shear modulus with pressure p for frictionless
spherical particles is a result of two key factors: (a) the
shear modulus for each individual packing i decreases
linearly with p, Gi ¼ Gi

0 − λip, along geometrical families
with fixed contact networks, and (b) discontinuous jumps
in Gi that occur when the contact network of a jammed
packing changes, and the packing moves to a new geo-
metrical family. The two important contributions to the
ensemble-averaged shear modulus, hGf þ Gsi and hGri, as
well as hGi, are accurately described by a scaling function
that smoothly transitions between two power laws vs p. For
hGi, the exponent α ≈ 1 at lower pressures and β ≈ 0.5 at
higher pressures. Furthermore, we showed that the con-
tributions from geometrical families hGf þ Gsi remains
important in the large-N limit, because when the contri-
bution of rearrangements is removed, hGi linearly
decreases with p. Finally, we discovered that jammed

packings can unjam via isotropic compression, which
has important implications for studies of reversibility
during cyclic compression [29–31].
These results will inspire new investigations of the

mechanical response of packings of nonspherical particles.
For example, recent computational studies have found that
the shear modulus of jammed packings of ellipse-shaped
particles scales as hGi ∼ pβ with β ≈ 1 [32] in the high-
pressure regime, which is different than the scaling expo-
nent found here. Does the presence of quartic vibrational
modes [25] change the pressure dependence of rearrange-
ments or geometrical families? Additional studies are
required to understand why the power-law scaling of
hGi with pressure changes with particle shape [33,34].
Prior studies [35] have also shown that hGi for frictional
sphere packings exhibits similar power-law scaling vs p
with β ≈ 0.5 in the large-pressure regime as that found here.
Does this occur because frictional interactions do not affect
the scaling of hGi vs p or is the similarity of the power-law
scaling fortuitous? Thus, additional studies are required to
understand the pressure-dependent mechanical response of
packings of frictional particles.
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