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Amorphous packings of frictionless, spherical particles are isostatic at jamming onset, with the number of

constraints (contacts) equal to the number of degrees of freedom. Their structural andmechanical properties

are controlled by the interparticle contact network. In contrast, amorphous packings of frictional particles are

typically hyperstatic at jamming onset. We perform extensive numerical simulations in two dimensions of

the geometrical asperity (GA)model for static friction to further investigate the role of isostaticity. In theGA

model, interparticle forces are obtained by summing up purely repulsive central forces between periodically

spaced circular asperities on contacting grains. We compare the packing fraction, contact number,

mobilization distribution, and vibrational density of states (in the harmonic approximation) using the GA

model to those generated using the Cundall-Strack approach. We find that static packings of frictional disks

obtained from the GA model are mechanically stable and isostatic when we consider interactions between

asperities on contacting particles. The crossover in the structural and mechanical properties of static

packings from frictionless to frictional behavior as a function of the static friction coefficient coincides

with a change in the type of interparticle contacts and the disappearance of a peak in the density of vibrational

modes for theGAmodel. These results emphasize thatmesoscale features of themodel for static friction play

an important role in determining the properties of granular packings.
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Recently, intense effort has been devoted to understand-
ing the jamming transition of athermal frictionless spheres
with repulsive contact interactions [1–4]. However, physi-
cal models of granular media should include static friction
[5]. Experiments [6,7] and simulations [8–10] have shown
that amorphous frictional sphere packings can be obtained
at jamming onset over a wide contact number range
dþ 1 � z � 2d [3,11,12], where d is the spatial dimen-
sion. In addition, a crossover from frictionless random
close packing � ’ �RCP and z ’ 2d to frictional random
loose packing � ’ �RLP and z ’ dþ 1 occurs as the static
friction coefficient � increases above �� � 0:1 (0.01) in
d ¼ 2ð3Þ [12]. Moreover, a large number Ns of ‘‘sliding’’
contacts (with the tangential equal to the normal force
times�) exists for small�, and Ns decreases with increas-
ing � [12,13]. When contact-counting arguments account
for sliding contacts, frictional packings can be described as
‘‘isostatic’’ with vibrational properties similar to those of
frictionless spheres [10].

In this Letter, we address several open questions: How
sensitive are the structural (dependent on particle posi-
tions) and mechanical properties (dependent on interpar-
ticle forces) of frictional packings to the friction model
employed? What determines the static friction coefficient
�� that marks the crossover from frictionless to frictional
behavior for static packings? How doesDð!Þ for frictional
packings differ from that for frictionless particles with

complex and anisotropic (e.g., convex and nonconvex)
shapes?
Most prior studies focused on the Cundall-Strack (CS)

approach [14], where static friction is modeled by a tan-
gential spring (with spring constant kt and restoring force
ktut, where ut is the relative tangential displacement) when
particles are in contact, and the Coulomb sliding condition
holds. With the GA model, we can distinguish interparticle
contacts based on which asperities interact and calculate
Dð!Þ by taking derivatives of total potential energy with-
out making ad hoc assumptions for sliding contacts [10].
Prior GAmodels mimicking frictional interactions [15–17]
studied dense granular flows.
Static GA packings are mechanically stable (MS) and

isostatic when asperity interactions are considered, inde-
pendent of the effective static friction coefficient. The
crossover in the structural and mechanical properties as a
function of the effective friction coefficient coincides with
changes in the interaction types between asperities and the
disappearance of a strong, primarily rotational peak in
Dð!Þ at low frequency. We find that Dð!Þ for the GA
model differs from analogous studies for the CS case [10].
We construct MS packings of N rough bidisperse disks

(50-50 by number with diameter ratio r ¼ 1:4) in d ¼ 2
using the GA model and compare them to those from the
CS approach. The lower right panel of Fig. 1 shows rough
circular disks in the GA model, characterized by Na
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circular asperities with centers on the disk rim and ratio of
the asperity to particle radius Ra=R. We consider two disk
interactions: (1) asperities on disks i and j and (2) the
core of i with an asperity on j. All interactions are
purely repulsive linear springs [3]. Asperities a and a0

on disks i and j interact through Vaa0
ij ¼ �=ð2�2

ijÞð�aa0
ij �

raa
0

ij Þ2�ð1� raa
0

ij =�aa0
ij Þ, where raa

0
ij is the center-to-center

separation between asperities, �aa0
ij ¼ Ra

i þ Ra0
j , and

�ij ¼ �aa0
ij þ Ri þ Rj. We locate asperity a on the rim of

disk i at angle �ai ¼ �i þ 2�a=Na and coordinates
rai ¼ ri þ Riðcos�ai ; sin�ai Þ, where ri is the position of
disk i. Asperity a on disk i and core of j interact through
Va
ij ¼ �=ð2�2

ijÞð�a
ij � raijÞ2�ð1� raij=�

a
ijÞ, where �a

ij ¼
Ra
i þ Ri þ Rj (where raij is the separation between the

center of asperity a on i and the center of j). The total

GA potential energy is V¼P
i>j

P
a>a0V

aa0
ij þP

i>j

P
aV

a
ij.

We can define an effective GA static friction coefficient

�eff ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð2Ra=RÞ= sinð�=NaÞ�2 � 1

p
, themaximum tan-

gential to normal interparticle force ratio, when an asperity
on disk i fits in between two adjacent asperities on j as in the
lower right panel of Fig. 1. This is the maximum tangential
to normal force ratio in the zero interparticle overlap limit.
The ratio of the number of asperities on the large and small
particles is set close to r so that the interspecies �eff is
approximately the same as the intraparticle one. The CS
[4,12] static friction is included between geometrically
smooth circular disks i and j using a tangential spring
with tangential to normal spring constant ratio kt=kn ¼
1=3 (kn ¼ �=�ij) [5], and jftj remains at the maximum

value �fn when ut exceeds the Coulomb threshold. We
studied system sizes from N ¼ 6 to 96, asperity numbers
Na ¼ 8, 16, and 32, and �, �eff ¼ 10�3 to 10.
We generate approximately 105 MS GA and CS pack-

ings at jamming onset, for each N and � or �eff , using the
compressive quench from zero density simulation protocol
[18]. We randomly place point particles in a square peri-
odic cell of unit size. We increase particle radii in small
steps corresponding to �� ¼ 10�4. After each �� incre-
ment, the system is relaxed to the nearest local potential
energy minimum using dissipative forces proportional to
the disks’ translational and angular velocities with large
damping coefficients. If after minimization we have zero
total potential energy per particle (i.e., V=N < Vtol=� ¼
10�14), we continue compressing the system. Otherwise, if
V=N � Vtol=�, we decompress.�� is halved each time we
switch from compression to decompression or vice versa.
We stop when Vtol < V=N < 1:01Vtol and the average
particle overlap is less than 10�7. All GA packings are
mechanically stable with 3N0 � 2 eigenvalues mi > 0
for the dynamical matrix Mkl ¼ d2V=ðdRkdRlÞ, where
R ¼ fr1; . . . ; rN0 ; ðR1 þ Ra

1Þ�1; . . . ; ðRN0 þ Ra
N0 Þ�N0 g, N0 ¼

N � Nr, andNr represents the rattler particles. (CS and GA
rattler particles have less than three interparticle contacts.)
Figure 2 shows results for the average packing fraction
h�Ji and contact number hzppi ¼ h2Npp=ðN0Þi at jamming

onset, where Npp are the particle-particle contacts irre-

spective of the number of asperity contacts. As previously
noted [12], h�Ji varies from � 0:84 to 0.75 and hzppi
ranges from � 4 to 3 as � increases for both CS and GA
models. The crossover from frictionless to frictional
behavior occurs near �� � 0:1. h�Ji is 1% larger at large
�eff values for the GA model, as expected for finite Na.
The upper-right panel of Fig. 2 shows Nr=N versus � or
�eff . Both increase with � or �eff and then plateau.
Because of slow relaxation processes, we detect fewer
rattlers for the GA model, causing hzppi to be 5% larger

at large �eff .

The cumulative mobilization distributions [Að�Þ ¼
R�
0 PðxÞdx, where � ¼ jftj=ð�fnÞ] are qualitatively similar

for the CS and GA models in Fig. 3. At low� or�eff , Að�Þ
for both models has a strong peak at � ¼ 1 [9,13]. As � or

FIG. 1 (color online). Top: Nearly identical MS packings of
N ¼ 6 bidisperse disks at jamming onset from the CS (left) and
GA (right) models with �, �eff ’ 0:3 and �J ’ 0:78 and 0.76,
respectively; they possess the same nine interparticle contacts,
and the GA model has the isostatic number of contacting
asperities Naa

c ¼ 3N � 1 ¼ 17. (right) The central particle has
five interactions between asperities on three contacting grains.
The solid and striped gray contacts between the central particle
and its neighbors are single and double asperity contacts, re-
spectively. Bottom: (left) Schematic of the ratio of tangential and
normal forces ft=fn at constant interparticle overlap versus
the relative tangential displacement ut for the CS (dashed)
and GA (solid) models. For CS, ft=fn is linear with slope kt,
whereas for GA ft=fn ¼ ut=½ð�aa0

ij � raa
0

ij Þ2 � u2t �1=2, where

raa
0

ij is constant at fixed overlap. Single (double) asperity

contacts occur near ft=fn ¼ 0 (maximal jftj=fn). Sliding

happens when �ua ¼ ��fn=kt in CS, whereas in GA ua ¼
��aa0

ij =ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=�2

eff

q
Þ and ft=fn is periodic at zero overlap.

(right) Schematic of the interaction in the GA model between
disks with radius R, Na circular asperities with radius Ra and
angle 2�=Na.
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�eff increases, it disappears and the average mobilization
decreases. Only quantitative differences in the mobiliza-
tion distributions arise from different tangential force laws
shown in the lower-left panel of Fig. 1. At fixed overlap,
ft=fn varies linearly with ut until the sliding limit at �ua,
whereas ft=fn is periodic for the GA model.

In the lower panel of Fig. 4, we show the asperity
contacts (single, double, and triple) for each interparticle
contact. We find that MS packings are isostatic [19] with
Naa

c ¼ 3N0 � 1 contacts over the entire range of �eff .
Deviations from isostaticity are less than 2% for all N
and Na values studied. In contrast, static packings of fric-
tional particles are hyperstatic (zpp > 3) when considering

interparticle contacts for both GA and CS [4] (cf. lower
panel of Fig. 2).

Asperity contacts may explain the structural and me-
chanical crossover near ��. In the top panel of Fig. 4, we
plot the probability of single and double asperity contacts
versus �eff . They are roughly equiprobable at low friction,
whereas only double asperity contacts occur at high

friction. To maintain isostaticity, at low friction there are
typically two double and two single asperity contacts per
particle, whereas at high friction three double contacts
form for a total of approximately six per particle in both
cases. The �eff value where single become less probable
than double asperity contacts (�0:1), coincides with the
�� value above which the packing fraction, contact num-
ber, and mobilization distributions begin to deviate signifi-
cantly from frictionless behavior. Similar behavior also
occurs for the CS model. In the upper panel of Fig. 4, we
show the probability of low (� < �c ¼ 0:5) and high (� �
�c) mobilization contacts versus �. (The results do not
depend strongly on �c.) At low friction, most contacts
possess high mobilization, whereas they have low mobi-
lization at high friction. At high friction, double asperity
contacts resemble low mobilization contacts. At low fric-
tion, both single and double asperity contacts can possess
high mobilization. The crossover in the probabilities of low
and high mobilization contacts occurs also near ��.
We can directly calculate the GA Dð!Þ from the total

potential energy (in the harmonic approximation). The

eigenmode with frequency !j is m̂j ¼ fmx;1
j ; my;1

j ;

m�;1
j ; . . . ; mx;N0

j ; my;N0
j ; m�;N0

j g with
P

�;iðm�;i
j Þ2 ¼ 1. The

rotational Rj and translational Tj content of each mode j

are Tj ¼ P
i¼1;N0

P
�¼x;yðm�i

j Þ2, and Rj ¼ 1� Tj; the

participation ratio Pj ¼ ½P�;iðm�;i
j Þ2�2=½NP

�;iðm�;i
j Þ4� for

� ¼ x, y and � separately, and the optical order

parameter Q
opt
j ¼ P

i;km
�;i
j m�;k

j =½NP
iðm�;i

j Þ2� that charac-
terizes whether the rotational content of j is co- or counter-
rotating [10].
Dð!Þ for MS packings using the GA model is shown in

Fig. 5, with the following characteristics: (i) We observe a
strong peak at low frequencywhose heightDð!maxÞ increases

FIG. 3 (color online). Cumulative mobilization distributions
for N ¼ 48 for the CS (left) and GA (right) models for�,�eff ¼
10�3, 10�1, 1, and 10, where the mobilization � ¼ jftj=ð�fnÞ.
GA mobilities � > 1 can occur due to finite interparticle over-
laps. The bin at � ¼ 1 includes all � � 1 to allow a comparison
with the CS model.

FIG. 2 (color online). Top: Average packing fraction h�Ji for
MS packings from the CS and GA models versus � or �eff . The
lower-left inset shows h�Ji versus � or �eff for several system
sizes N and asperity numbers Na. Legends show Na (right) and
N (left), and axes without tick labels are the same as in the main
panel. Bottom: Average interparticle contact number hzppi ver-
sus � or�eff . The insets show the N and Na dependence of hzppi
(lower left) and rattler fraction Nr=N (upper right).
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and location !max shifts to lower frequency with decreasing
�eff . We find that !max ��eff and Dð!maxÞ ���1

eff as

�eff ! 0 (cf. upper-right inset of Fig. 5). These modes are
mostly rotational (R� 1), globally incoherent (Qopt � 0),
and quasilocalized (P & 0:1) as �eff ! 0. Similar peaks in
Dð!Þ that contain low-frequency rotational modes have been
found in ellipse packings [20,21] at lowaspect ratio. For small
�eff as ! increases, Dð!Þ approaches the frictionless case
with translational and quasilocalized modes at high frequen-
cies. (ii) A peak in Dð!Þ at low frequency with R� 1
disappears for �eff * ��. (iii) For �eff * ��, modes have
mixed rotational and translational content with R� T at all
frequencies. At low frequencies, modes are gearlike [22–24]
(Qopt ��0:5) and collective (P� 0:3). At high frequencies,

modes are increasingly localized with corotating angular
components (Qopt � 0:5).

Low-frequency rotational modes couple strongly to the
mechanical response of GA packings, shown by quasistatic
(a) isotropic compression in packing fraction increments to
��tot ¼ 10�8 or (b) simple shear in strain increments
(coupled with Lees-Edwards boundary conditions) to
	tot ¼ 10�8 from a reference configuration at ��0 ¼
10�6. We calculated the overlap Oð!Þ ¼ 
D 	
m̂jð!Þ=j
Dj2 of the deformation vector 
D 
 D�D0,

where D0 (D) is the 3N
0-dimensional coordinate vector of

the reference configuration [25]. In the upper inset of Fig. 5,
the low-frequency rotational modes contribute to at least
half of the cumulative and averaged absolute overlap

~Oð!Þ ¼ R
!
0 jOð!0Þjd!0=

R1
0 jOð!0Þjd!0 for both com-

pression and shear.
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