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Role of grain dynamics in determining the onset of sediment transport
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Sediment transport occurs when the nondimensional fluid shear stress � at the bed
surface exceeds a minimum value �c. A large collection of data, known as the Shields
curve, shows that �c is primarily a function of the shear Reynolds number Re∗. It is
commonly assumed that � > �c(Re∗) occurs when the Re∗-dependent fluid forces are too
large to maintain static equilibrium for a typical surface grain. A complimentary approach,
which remains relatively unexplored, is to identify �c(Re∗) as the applied shear stress at
which grains cannot stop moving. With respect to grain dynamics, Re∗ can be viewed as
the viscous time scale for a grain to equilibrate to the fluid flow divided by the typical
time for the fluid force to accelerate a grain over the characteristic bed roughness. We
performed simulations of granular beds sheared by a model fluid, varying only these two
time scales. We find that the critical Shields number �c(Re∗) obtained from the model
mimics the Shields curve and is insensitive to the grain properties, the model fluid flow,
and the form of the drag law. Quantitative discrepancies between the model results and the
Shields curve are consistent with previous calculations of lift forces at varying Re∗. Grains
at low Re∗ find more stable configurations than those at high Re∗ due to differences in the
grain reorganization dynamics. Thus, instead of focusing on mechanical equilibrium of a
typical grain at the bed surface, �c(Re∗) may be better described by the stress at which
mobile grains cannot find a stable configuration and stop moving.

DOI: 10.1103/PhysRevFluids.2.034305

I. INTRODUCTION

A fluid that flows over a granular bed exerts a shear stress on the grains and, if the flow is
sufficiently strong, will entrain grains in the flow. This process is responsible for shaping much
of the natural world. Understanding and controlling the erosion of sediments by flowing water are
significant for a range of ecological and agricultural problems [1–3]. Thus, the nature of the onset
and cessation of grain motion in the presence of a fluid shear flow has been the subject of extensive
research dating back many decades (for example, see recent reviews by Dey [4] and Buffington
and Montgomery [5]), but it is still not fully understood. This problem involves nontrivial coupling
between several physical processes that are each difficult to characterize. Predicting the dynamics
of granular materials is challenging, even for very simple cases like frictionless disks [6]. In the
natural world, the geological processes that produce the granular materials in question yield grains
with varying size, shape, roughness, and other material properties [7]. The mechanics of the flow
that impart stress to the bed are also nontrivial, given both the wide range of channel geometries
in natural streams and rivers [8,9] and possibly turbulent conditions. Additionally, the fluid inside
the bed is also moving, as the bed can be viewed as a porous material, and is governed by Darcy
flow [10], although with a complicated boundary condition linking it to the turbulent flow at the bed
surface.
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FIG. 1. A collection of experimental and field data from Dey [4] showing the variation of the minimum
Shields number for grain motion �c with the shear Reynolds number Re∗. The solid black line represents the
theoretical curve for monodisperse sediment derived by Wiberg and Smith [24]; see text for discussion.

Despite the apparent complexity of this problem, there is evidence that the boundary in parameter
space between mobile and static beds can be described relatively simply. In particular, a collection
of data dating back over a century suggests that the onset of grain motion can be captured by
only two nondimensional parameters [4,5,11–23]. First, the Shields number � = τ

�ρgD
compares

the horizontal shear stress τ exerted on the bed surface by the fluid to the downward gravitational
stress �ρgD, where �ρ = ρg − ρf , ρg and ρf are the mass densities of the grains and fluid, g is
the gravitational acceleration, and D is the typical grain diameter. The minimum Shields number
�c required for grain motion is typically plotted as a function of the shear Reynolds number
Re∗ = u∗D/ν, where u2

∗ = τ/ρf and ν is the kinematic viscosity of the fluid. Figure 1 shows data
for � = �c versus Re∗ taken from Dey [4], who compiled data from a range of sources [11–23].
These data, often referred to as the Shields curve, were collected over a wide range of different
flows, spanning the range from laminar to fully turbulent, and for many channel geometries and
grain properties. Although the data are scattered, they cluster around a master curve. However, why
the Shields curve takes this particular form and why that form is so robust against variation of other
parameters remain open questions.

A. Prior descriptions of the Shields curve

There have been a number of approaches aimed at explaining the shape of the Shields curve
(see Dey [4] for a comprehensive treatment). To date, the most successful descriptions are hydraulic
or empirical scaling formulas [13,22,23,25–27]; see Paphitis [28] for a review of these models.
This approach was pioneered by Shields [13], who originally found that �c varies with Re∗ and
noted that Re∗ controls the ratio of the boundary roughness (set by the grain size D) to the size
of the viscous sublayer. The Shields curve can then be broken into regions where grains are, as
compared to the viscous sublayer, completely submerged (Re∗ < 2), near the top (2 < Re∗ < 10),
partially protruding (10 < Re∗ < 1000), and fully protruding (Re∗ > 1000). These regions appear
to coincide with distinct regimes of the Shields curve. Others have tried a similar approach, where
�c is plotted as a function of different nondimensional parameters. For instance, the Yalin number
� = Re∗/

√
�c [26] and dimensionless grain diameter D∗ = D(g′/ν2)1/3 [27], where g′ = ρg−ρf

ρg
g

is the buoyancy-reduced gravitational acceleration, have been used to eliminate the shear stress
dependence on the horizontal axis. These approaches have the advantages of being based in grain
scale fluid mechanics and being highly predictive, but they still require an empirical fit to the data
shown in Fig. 1.
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FIG. 2. Grain i will move when the ratio of horizontal (rightward) to vertical (downward) forces is equal to
cot ψ . Possible landing sites (pockets) are marked 1, 2, and 3. As we discuss in the text, whether the grain will
stop after motion is initiated depends both on the geometrical details of the pockets as well as the dynamics of
the grain motion, which vary with Re∗.

Attempts at a more theoretical derivation [24,29–32] of the shape of the Shields curve are typically
based on static force and torque balance of a typical grain that resides on the surface of the bed
(see [4] for a thorough review). Such approaches have been successful at capturing certain features
of the Shields curve, but not the quantitative shape over the full range of Re∗. Thus, the variation of
�c with Re∗ is assumed to be a purely fluid-driven effect. The Shields curve denotes the maximum
stress at which a grain on the bed surface in a typical geometric configuration remains in static
equilibrium given the Re∗-dependent contributions from lift, drag, and turbulence. However, since
these calculations consider a single grain in a particular local environment, they are highly sensitive
to the details of that environment, which is often called a “pocket” with pocket angles ψ that specify
the orientation of grain-grain contacts [33–36].

A notable example of this approach by Wiberg and Smith [24] considered a quasi-two-dimensional
case where a grain sits in a pocket and motion is initiated when the downstream forces exceed the
resistive forces. That is, grain motion occurs when the ratio of the downstream force applied by the
fluid on the grain Fd to the vertical forces Fg′ − Fl (the buoyancy reduced gravitational force minus
fluid-induced lift force) is equal to cot ψ (see Fig. 2). Thus, initiation of motion occurs when

�c ∝
(

Fd

Fg′

)
c

= cot ψ
1

1 + cot ψ(Fl/Fd )c
, (1)

where the subscript c denotes the critical condition to initiate motion. The only inputs to the
calculation are the pocket angle ψ (see Fig. 2) and the form of the fluid flow at varying Re∗,
which modulates the ratio (Fl/Fd )c and causes variation in �c. Wiberg and Smith [24] assumed a
logarithmic fluid profile for Re∗ > 100 and a form proposed by Reichardt [37] for Re∗ < 100 that
has been shown to agree well with experiments [38]. They assumed a drag force Fd = Cd

1
2ρf ū2Ax

and lift force Fl = Cl
1
2ρf (ū2

t − ū2
b)Ax , where Cd is the Rep-dependent drag coefficient, ū is the

height-dependent velocity profile, subscripts t and b denote the respective values at the top and
bottom of the grain, Ax is the cross-sectional (frontal) area of a grain, and Cl is a constant lift
coefficient. They then self-consistently solved Eq. (1) by calculating Fd and Fl from the appropriate
fluid profiles at different values of Re∗. Small grains (Re∗ � 1) are buried deep in the viscous
sublayer, and lift forces are small. As Re∗ increases, grains begin to protrude out of the viscous
sublayer, and lift forces increase rapidly compared to drag forces. This regime corresponds to
the global minimum in the Shields curve at Re∗ ≈ 10. Large grains (Re∗ � 10) protrude far into
the overlying logarithmic flow profile. In this case, lift forces persist, but their effect becomes less
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pronounced relative to the drag force. In Fig. 1, we show a solution to this equation taken from Wiberg
and Smith [24], where the bed roughness ks is equal to the grain diameter D and ψ = 30◦. This
curve captures the global minimum in the Shields curve at Re∗ ≈ 10, corresponding to conditions
where the grain size is roughly equal to the size of the viscous sublayer. The overall magnitude of
this curve is proportional to cot ψ , which is essentially a fit parameter and is very sensitive to the
local grain geometry. This curve agrees well with data for Re∗ > 1, but it underestimates �c at low
Re∗. A smaller value of ψ would better capture the data at low Re∗, but there is no clear physical
reason to choose a different ψ for small Re∗.

B. Role of grain dynamics

However, a theoretical description for �c(Re∗) that includes Re∗-dependent grain dynamics may
be able to explain how beds could be stronger at low Re∗. For example, grain motion can be temporary,
as individual grains that are unstable at a particular shear force can find more stable locations. Depend-
ing on the preparation history of the bed, grains may move initially when a shear flow is applied,
but the bed may grow stronger as grains search and find more stable configurations [33,39–41].
That is, mobilized grains can often find a more stable pocket than the original one and stop moving,
and this effect is usually neglected in prior theoretical considerations. How does Re∗ affect the
dynamics of grains as they search for stability? How do the results of models that include the
grains’ search for collective stability compare to the Shields curve? This paper will address these
two important questions.

To illustrate the effects of Re∗-dependent grain dynamics, we first consider a simple example of
a grain sitting on top of a two-dimensional (2D) bed, shown in Fig. 2. Grain i will become unstable
when the ratio of the horizontal fluid force (rightward) and vertical forces (gravity minus lift forces)
is cot ψ . After this grain becomes unstable (i.e., not in force and torque balance) at the surface of
the bed, the subsequent dynamics depend strongly on Re∗. The mobilized grain can then land and
remain in one of the other pockets on the bed surface, labeled 1–3, depending on geometry, grain
properties, and the amount of momentum it has acquired. That is, for the grain to land in one of the
pockets, the grain must be stable in that pocket at the given � and it must be moving sufficiently
slowly to stop in the pocket.

If we approximate the motion of a mobile grain as that of a sphere in a uniform fluid flow, then
the drag force is given by FD = 1

2Cdρf AxV
2, where Ax = π

4 D2 is the cross sectional (frontal) area
of the sphere, the drag coefficient Cd ≈ 24

Rep
+ 0.4, the particle Reynolds number Rep = V D/ν, and

V is the slip velocity between the fluid and the sphere. The first term, 24/Rep, in Cd captures Stokes
drag (linear in V ) and the second term, 0.4, captures inertial drag (quadratic in V ). The dynamics
can thus be written as (

ρg

π

6
D3

)
dV

dt
= −(3πρf νD)V −

(
π

20
ρf D2

)
V 2, (2)

where ρg
π
6 D3 is the grain mass. The solution to this equation is

V (t) = V0
exp(−t/τν)

1 + Re0
p

60 [1 − exp(−t/τν)]
, (3)

where τν ∝ ρgD
2

ρf ν
is the viscous equilibration time scale, Re0

p = V0D/ν is the initial particle Reynolds

number, and V0 is the slip velocity at t = 0. If Re0
p � 1, then V (t) = V0 exp(−t/τν), and the viscous

time scale specifies the dynamics. If Re0
p � 1, then τν becomes large, and a Taylor expansion of

the exponential terms in Eq. (3) yields V (t) = V0(1 + t
τI

)−1, where τI ∝ ρgD

ρf V0
. This solution is also

obtained by integrating Eq. (2) with the Stokes drag term set to zero. We note that even for Re0
p � 1,

τν still dominates the final portion of the dynamics.
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Assuming a constant acceleration �g′, the dimensionless shear stress � takes a characteristic

time τ� ∝
√

D
�g′ to accelerate a grain through a distance D, which is the typical spacing between

successive collisions with the bed. Here, g′ is the buoyancy-reduced gravitational acceleration, so
�g′ is the typical acceleration that a grain first experiences after it becomes unstable. We note that

τ� can also be written as τ� ∝
√

ρg

ρf

D
u∗

. The form we have chosen emphasizes its connection to

horizontal acceleration of grains along the bed surface. However, the acceleration of a mobile grain
will eventually be cut off by equilibrating to the fluid flow. Thus, the bed collision time scale τ�

should be compared to the fluid equilibration time scales τν , which is associated with the viscous
component of the drag force, and τI , which is associated with the inertial component of the drag
force. It can be shown that Re∗ compares the viscous equilibration time scale to the bed collision
time scale,

Re∗ =
√

ρf

ρg

τν

τ�

. (4)

For Re∗ � 1, a weakly mobilized grain quickly equilibrates to the fluid flow. Thus, it is not
significantly accelerated between interactions with the bed, it acquires very little momentum, and its
dynamics are viscous dominated. In this case, the effect of grains bouncing over geometrically stable
pockets should be negligible. If the grain finds a geometrically stable location, it will stop. When
Re∗ � 1, a mobilized grain is accelerated between successive interactions with the bed, acquiring
momentum p ∼ �mg′τ�, and its dynamics are acceleration dominated. For Re∗ � 1, the inertial
time scale is dominant, meaning that τI /τ� is the relevant ratio, instead of τν/τ�. This ratio is a
constant, τI /τ� = √

ρg/ρf . Physically, this means that further increasing Re∗ does not cause the
grains to be accelerated for longer times. However, a typical ratio ρg/ρf ≈ 3 for rocks, minerals, and
soils still yields τI > τ�. This means that, for Re∗ � 1, weakly mobilized grains are significantly
accelerated between interactions with the bed [42,43], which is not true at Re∗ � 1. This framework
provides a mechanism whereby grains stop more easily at low Re∗ than at high Re∗, given the
same value of �. Note that this argument implies that τI plays a secondary role, and that much of
the relevant physics can be captured by a viscous drag law, neglecting the inertial component. We
return to this point in our argument below. We also note that our dimensional analysis focuses on a
comparison of a viscous damping time τν to an acceleration time scale τ�. This is similar in spirit to
a Stokes number [44–46], which plays a crucial role in the degree of energy loss in fluid-mediated
grain-grain collisions. To compare to the data in Fig. 1, we chose to formulate our results in terms
of Re∗.

To test this interpretation, we here present the results of discrete-element method (DEM) simu-
lations. While many DEM-based approaches include as much physical realism as possible [47–51],
we here simplify the problem to isolate the role of Re∗ as the ratio of the two time scales
controlling grain dynamics. Thus, we are neglecting many physical effects such as Re∗-dependent
lift forces [24], cohesive forces [52], turbulent fluctuations [43,53], coherent structures [54–57],
added mass forces [58], and Basset forces [59]. In the present study, noncohesive grains are driven
by a model fluid shear flow, which does not vary with Re∗, but is coupled to the velocity of the
grains through a drag law, which sets Re∗. In previous work [60], we investigated how �c varied
with a particle Reynolds number using a purely linear drag law in 2D with frictionless, purely elastic
grain-grain interactions. Interestingly, even this simple model captured certain features of the Shields
curve, namely plateaus at low and high particle Reynolds number with a decrease in between. In
this work, we use the improved dimensional analysis presented above to explicitly connect the form
of the drag law to Re∗, in order to more directly compare the results of the DEM simulations to
the Shields curve. Additionally, we vary the spatial dimension (2D to 3D), inelastic grain-grain
interactions, friction, irregular grain shape, and the form of the drag law (linear to quadratic). We
also include Re∗-independent lift forces and vary their magnitude. By varying these parameters, our

034305-5



CLARK, SHATTUCK, OUELLETTE, AND O’HERN

goal is to understand the minimal subset of parameters that control the shape of �c(Re∗) from the
perspective of Re∗-dependent grain dynamics.

II. METHODS

A. Equations of motion and grain-grain interactions

We study systems composed of N/2 large and N/2 small grains with diameter ratio 1.4 in
two dimensions [61,62] and 1.2 in three dimensions [63]. These size ratios are chosen to maintain
structural disorder in the bed. In our analysis, we use the average diameter to evaluate dimensionless
quantities such as Re∗. Our domain has periodic boundaries in the streamwise direction, as well as
in the cross-stream direction in three dimensions. We use no upper confining boundary and a rigid
lower boundary with infinite friction so that the horizontal velocities of all grains touching it are
fixed to zero. We integrate Newton’s equations of motion for each grain, including rotational and
translational degrees of freedom, using a sixth-order Gear predictor-corrector integration scheme for
the case of Cundall-Strack friction [64] for disks in two dimensions and a modified velocity Verlet
integration scheme for all other systems. The total force on each grain is given by the vector sum
of contact forces from other grains, a gravitational force, and a drag force from a fluid that moves
horizontally, so that

mi

d �vi

dt
=

∑
j

�Fc
ij − mig

′ẑ + �Ff . (5)

The total torque on each grain is only due to tangential contact forces, so that

Ii

d �ωi

dt
=

∑
j

�sij × �Fc
ij . (6)

Here, the sum over j only includes grains contacting grain i, �sij is the vector connecting the center
of grain i to the point of contact between grains i and j , mi is the mass of the grain (mi ∝ D2

i in
two dimensions and mi ∝ D3

i in three dimensions), Ii is the moment of inertia of the grain, Di is the
diameter of the grain, �vi is the velocity of the grain, mig

′ is the buoyancy-corrected grain weight,
ẑ is the upward normal vector, and �Ff is the drag force from a model fluid flow, which we discuss
below. For the frictionless, elastic case [60], �Fc

ij = �F r
ij , where �F r

ij = K(1 − rij

Dij
)θ (1 − rij

Dij
)r̂ij is the

pairwise (linear repulsive spring) force on grain i from grain j , where K is the grain stiffness,
rij is the separation between the centers of the grains, Dij = (Di + Dj )/2, r̂ij is the unit vector
connecting their centers, and θ is the Heaviside step function. We set the nondimensional stiffness
K

mg′ > 3 × 103 to be sufficiently large that our results become independent of K . In this study, we

modify the contact force �Fc
ij to include dissipative grain-grain interactions and tangential forces. The

dissipative force is given by �Fd
ij = γv

mimj

mi+mj
(�vi − �vj ) · r̂ij , where the dissipation rate γv = −2 log en

τc
,

τc = π
√

m

2K
is the grain-grain collision time, m is the mean grain mass, and en is the coefficient of

normal restitution [65]. This form for the normal dissipation is often used to model energy losses
that arise from contact mechanics, such as viscoelasticity, internal heating, or internal vibrational
modes of grains. Here, it is likely that the fluid in the intergrain gap dominates the energy loss
during a collision, and the effective en depends on the relative impact velocity of the grains and
the viscosity of the fluid via the Stokes number St = ρgvij D

ρf ν
[44–46,59], where vij is a relative

velocity between colliding grains. We hold en fixed for each individual simulation, independent of
the relative grain velocity at contact or local fluid behavior. We will include velocity and viscosity
dependence of the coefficient of restitution in future studies. Tangential forces in granular beds arise
via two mechanisms: nonspherical grain shape and microscopic friction. We approximate these two
mechanisms using a grain-asperity model [66,67], shown in Fig. 3(b), and the Cundall-Strack model
for friction [64], shown in 3(c). Further details are provided in the Appendix.
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FIG. 3. Panels (a)–(c) show snapshots of simulations using (a) frictionless disks, (b) grain clusters from
Fig. 13 with μeff = 0.6, and (c) disks with Cundall-Strack friction [64], with μ = 0.6. All three simulations
shown here are at � = 0.25, Re∗ ≈ 1.6, and restitution coefficient of en = 0.8. The vertical axis gives the
height z/D above the lower boundary, where D is the mean grain diameter, and the horizontal axis gives the
horizontal velocity vx/v0 of grains and the fluid, where v0 is the characteristic fluid velocity at the bed surface.
Solid and dashed lines show the time-averaged horizontal component of grain velocity vg

x and fluid velocity vf
x ,

respectively, during a short simulation.

B. Details of the fluid drag

To simulate fluid shear, we choose a model fluid velocity profile that acts primarily on the surface
grains of a static bed and that increases somewhat for mobilized grains that move above the surface.
We set a characteristic fluid velocity v0 at the surface of a static bed, and we multiply this velocity by
a fluid profile f (φi), where φi is the local packing density at grain i, which yields v0f (φi) acting on
grain i. Our simulations use the local packing fraction φi , which varies horizontally and vertically,
but our results are insensitive to horizontally averaging φi such that local packing fraction only
varies vertically. In two dimensions, f (φi) = e−b(φi−φt ), where b controls the ratio of the magnitude
of the fluid flow above and inside the bed and φt = 0.5 is the typical packing fraction of a grain
at the top of a static 2D bed. φi is calculated in a small region with diameter Di + 2Dl around the
center of each grain, where Dl is the diameter of the larger grains. Since f = 1 for φi = φt , v0 is
roughly equal to the fluid velocity at the free granular surface. In three dimensions, we use a modified
form, f (φi) = [exp(−bφi) − exp(−bφm)]/[exp(−bφt ) − exp(−bφm)], as shown in Fig. 4. φm = 0.7
approximates the maximum packing fraction in the bulk of the bed, and φt = 0.42 is a typical packing
fraction of a grain at the top of the bed. This modified form is used to sufficiently reduce the fluid
velocity inside a 3D bed, where typical packing fractions are much smaller (≈0.55–0.64) than in two
dimensions (≈0.75–0.84). For all simulations, we set b = 5. We find that our results are insensitive
to the choice of f , provided its magnitude is very small in the bed. Since φt causes a shift in
our definition of the height of the bed surface (see Fig. 4), varying this parameter corresponds to
multiplying all our results for � by an order unity prefactor. However, our results are qualitatively
unaffected by this choice, and quantitative variation is weak, provided the choice for φt falls within
a reasonable range taken from Fig. 4 (i.e., 0.35–0.5).

To add model lift forces (in three dimensions only), we consider the difference �φi in packing
fraction between the top and bottom of a grain (Fig. 4). We again calculate the packing fraction in
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FIG. 4. (a) A scatter plot of the height z/D (D is the median grain size) of each grain above the lower
boundary vs the packing fraction φi of a typical configuration of 200 grains in a static 3D bed. We choose
φt = 0.42 to correspond with a typical packing fraction in the top layer and φm = 0.7 as the maximum packing
fraction in the bed (our simulations results are qualitatively insensitive to these choices). (b) A plot of the
same data points in (a), with the fluid profile f (φi) = [exp(−bφ) − exp(−bφm)]/[exp(−bφt ) − exp(−bφm)]
with b = 5 on the horizontal axis and z/D on the vertical axis. The solid line shows a binned average, which
roughly corresponds to the applied fluid profile, and the data points show the typical scatter, which arises from
local fluctuations in φi . (c) A scatter plot from the same bed as in (a) and (b) of the height z/D vs �φi , where
�φi is the difference between the local packing fraction calculated at the top and bottom of grain i (see text
for details). (d) The same data from (c), with the lift profile l(�φi) = �φi

0.3 on the horizontal axis. The solid line
shows a binned average.

a small region with diameter Di + 2Dl around the top and bottom of each grain, and �φi is the
difference between these two quantities. �φi is small in the bulk of a bed, large at the bed surface,
and small for mobilized grains above the bed. We then define a lift profile l(�φi) = �φi

0.3 , where the
factor 0.3 is chosen to normalize l to unity at the bed surface.

We then set the fluid force �Ff from Eq. (5) equal to the form from Eq. (2),

�Ff = B1[v0f (φi)x̂ − �vi] + B2|v0f (φi)x̂ − �vi |[v0f (φi)x̂ − �vi] + Bll(�φi)ẑ, (7)

where B1 = 3πρf νDi and B2 = π
20ρf D2

i , and Bl is a lift coefficient. While there are two different
particle diameters, we use the mean value D in our dimensional analysis below. In addition to
K

mg′ , μ, and en, which determine grain-grain interactions, Eqs. (5)–(7) include four additional
nondimensional numbers:

� = τ

�ρgD
= 2

3

(
B1v0 + B2v

2
0

mg′

)
, (8)

Re∗ =
√

ρf

ρg

τν

τ�

=
√

3

(
m/B1√

D
�g′

)
, (9)

Re0
p = v0D

ν
= 60B2v0

B1
, (10)

Fl

Fd

= Bl

B1v0 + B2v
2
0

. (11)

� is the Shields parameter, where the factor 2/3 from Eq. (1) represents a conversion [24] from a
force ratio [i.e., in Eq. (8), B1v0, B2v

2
0, and mg′ have units of force] to the stress ratio � = τ

ρg′D .
Assuming that the fluid stress τ acts approximately over the cross-sectional area of a sphere,
A = π

4 D2, then τA is the horizontal force exerted on a static grain. The gravitational stress ρg′D
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TABLE I. A list of the settings for the DEM simulations presented in this paper. Protocol refers to either
mobile-to-static transition (MS), where mobilized beds are allowed to search for stable configurations, or
static-to-mobile transition (SM), where we increase � slowly for a static bed until we observe indefinite grain
motion. Dimension denotes whether the simulations are 2D or 3D. Fill height is the distance between the top
of the bed and the bottom boundary. � is the Shields parameter. Drag law refers to linear (lin.) or quadratic
(quad.). Rep is the particle Reynolds number, and Re∗ is the shear Reynolds number. Fl/Fd is the typical ratio
of lift to drag forces at the top of the bed. en is the restitution coefficient. μ and μeff are friction coefficients for
the Cundall-Strack model and the grain-asperity model, respectively. We refer back to these settings using the
labels S-1 through S-8.

Protocol Dimension N Fill height � Drag Rep Re∗ Fl/Fd en μ, μeff

S-1 MS 3D 400 5D 0.05–0.5 quad. 0.01–30 000 0.05–1000 0 0.9 0
S-2 MS 3D 400 5D 0.05–0.5 lin. 0 0.03–2000 0 0.2 0
S-3 MS 3D 400 5D 0.01–0.5 lin. 0 0.05–2000 0 0.1–0.9 0
S-4 MS 3D 400 5D 0.05–0.5 quad. 0.01–30 000 0.05–1000 0–3 0.9 0
S-5 MS 2D 200 10D 0.06–1 lin. 0 0.05–1000 0 0.1–0.9 μ = 10−4–5
S-6 MS 2D 200 10D 0.06–1 lin. 0 0.05–1000 0 0.1–0.9 μeff = 0.1–2
S-7 SM 3D 50–800 5D 0.033–0.75 quad. 3000 100 0 0.5 0
S-8 SM 2D 50–800 5D–40D 0.033–1.7 lin. 0 10 0 0.8 μ,μeff = 0.6

acts over an effective area V
D

= π
6 D2, and ρg′D V

D
is the grain weight. Thus, the explicit force ratio

B1v0+B2v
2
0

mg′ is converted to a stress by multiplying by V
AD

= 2
3 . In Eq. (9), we rewrite the shear Reynolds

number Re∗ =
√

ρf

ρg

τν

τ�
from Eq. (4) in Sec. I B in terms of parameters relevant to the simulations

[see Eq. (7) using τν = m/B1, τ� =
√

D
�g′ , and ρg/ρf = √

3]. These two forms in Eqs. (4) and (9)

are equivalent, and both reduce to the standard form Re∗ = u∗D
ν

. Next, Re0
p is the particle Reynolds

number of a grain at the surface of the bed, which determines the relative contributions of the viscous
and inertial drag terms. We emphasize that, when comparing results between a linear drag law, where
B2 = 0, and a quadratic drag law, where B2/B1 is determined by Rep according to Eq. (10), we
first assign � and then specify v0. Simulations for linear and quadratic drag laws at the same � will
require different values of v0. This is distinct from the case where the fluid velocity is specified,
in which case we would severely underestimate the stresses at high Re∗. Finally, Fl

Fd
represents the

characteristic ratio of lift to drag forces at the bed surface. We set this quantity to zero in all but a
small number of our simulations.

To characterize the onset and cessation of bed motion in our system, we employ two protocols. To
study the mobile-to-static (MS) transition defined by �c, we distribute all grains randomly on a cubic
lattice throughout the domain and set a constant value of � for a total time of roughly 106 grain-grain
collision times (our results are insensitive to the details of this initial condition, as long as we consider
large ensembles of initial conditions where a significant fraction of grains are suspended when the
model fluid flow is applied). We then observe if and when our system stops, which we define as
when the maximum acceleration amax < athresh and maximum velocity vmax < vthresh, where athresh

is roughly one order of magnitude smaller than g′ and roughly three orders of magnitude smaller
than typical values for a moving bed and vthresh is roughly three orders of magnitude smaller than the
fluid velocity at the surface. Our results are independent of the values of these thresholds, provided
they are sufficiently small. To understand the dynamics of the static-to-mobile (SM) transition, we
begin with a static bed and slowly increase v0 in small increments, corresponding to increases in
stress �� � 0.05� until we observe amax > athresh or vmax > vthresh. We then keep v0 constant until
amax < athresh and vmax < vthresh or until the end of our simulation. Table I gives a full list of the
parameter values we explore, and we refer back to each of these settings S-1 through S-8 throughout
the remainder of the paper.
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FIG. 5. A collection of experimental and field data (filled dots) from Dey [4] showing the variation of the
minimum Shields number for grain motion �c with Re∗. The solid curves show the boundaries between states
with and without sustained grain motion from our model in three dimensions, excluding lift forces. The black
curve with square markers shows results for quadratic drag (S-1 settings), and the blue curve with open circles
shows results for linear drag in the limit of small restitution coefficient (S-2 settings).

III. RESULTS

A. Summary of simulation results

We present our results in the following way. In Sec. III B, we show simulations in three dimensions
using a quadratic drag law (S-1 settings in Table I). We show that �c(Re∗) from this model mimics
the Shields curve. Quantitative discrepancies are consistent with the relative contribution of lift
forces [24], as well as possible contributions from turbulent fluctuations [43,53,54,56] and coherent
structures [55,57]. We also find that �c(Re∗) is identical for both a quadratic drag law in three
dimensions (S-1 settings) and a linear drag law in three dimensions with small en (S-2 settings). We
show these results in order to justify our argument in Sec. I B that the inertial time scale τI plays
only a secondary role, since linear drag includes only τν and not τI . In Sec. III C, we give further
details of how �c(Re∗) with linear drag (S-2 and S-3 settings) converges to the result from quadratic
drag (S-1 settings) when en approaches zero. In Sec. III D, we include lift forces at the bed surface
(S-4 settings), and �c decreases as expected. In Sec. III E, we use 2D simulations (S-5 and S-6
settings) to show that friction and irregular grain shape only weakly affect the results. In Sec. III F,
we use weakest-link statistics to show that grain motion is always initiated at �c(Re∗) for large
systems (using S-7 and S-8 settings). This picture suggests that fluid-sheared granular beds possess
a dynamical instability for moderate to high Re∗, where mobile grains are unable to stop, and that
grain dynamics plays a dominant role in this regime.

B. �c varies with Re∗-dependent grain dynamics

The main result from our work is shown in Fig. 5. The small, black dots represent experimental
and field data from Dey [4]. The black curve with square markers is the boundary �c(Re∗) in three
dimensions between systems with and without sustained grain motion from our model with S-1
settings. We find a nearly identical boundary using a linear drag law when en is small, as shown
by the solid blue curve with open circles, where en = 0.2 (S-2 settings). As discussed below in
Sec. III C, small en suppresses the effect of grain impact with the bed for linear drag; for quadratic
drag, the inertial equilibration time scale limits the kinetic energy of mobilized grains. In both the
cases of linear drag with small en and quadratic drag, the key physics near �c is the dynamics of
mobilized grains between successive interactions with the bed.
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FIG. 6. Packing fraction, grain and fluid velocity, and grain acceleration profiles from simulations of
mobilized beds using a quadratic drag law (S-1 settings) at � ≈ �c(Re∗) and 10−2 � Re∗ � 103. The profiles
are obtained by time-averaging and binning by grain height z/D (vertical axes) for Re∗ ≈ 0.02 (circles), 0.7
(squares), and 250 (stars), with more values included in the insets. (a) Packing fraction φ profile for several Re∗.
The inset shows the maximum grain height zmax vs Re∗. (b) Grain vg

x /v0 (solid lines) and fluid vf
x /v0 (dashed

lines) velocity profiles. The inset shows the ratio of the average grain velocity v̄g
x in the mobilized region and

above to the average fluid velocity v̄f
x in the same region. The mobilized region is defined as z/D > 5.25 and the

results are qualitatively insensitive to the choice of the threshold. (c) Normalized horizontal grain acceleration
ag

x (�g′)−1 profile. The inset shows the average normalized horizontal grain acceleration in the mobilized region
versus Re∗.

Since we do not vary the fluid flow profile, Re∗-dependent grain dynamics are solely responsible
for the variation seen in Fig. 5. To illustrate how grain dynamics vary with Re∗, Fig. 6 shows data from
simulations of mobilized beds using S-1 settings at � ≈ �c(Re∗) for 10−2 � Re∗ � 103. Figure 6(a)
shows height z/D versus packing fraction φi , and the inset shows the maximum height zmax that
mobile grains achieve as a function of Re∗. Figure 6(b) shows height z/D versus grain velocity
v

g
x /v0 (solid lines) and fluid velocity v

f
x /v0 (dashed lines). The inset shows the ratio of average

grain velocity v̄
g
x in the top layer and above (i.e., z/D > 5.25) to the average fluid velocity v̄

f
x in the

same region. As Re∗ increases, v̄
g
x /v̄

f
x decreases, meaning that mobile grains do not equilibrate to

the fluid flow. Figure 6(c) shows the height z/D versus the normalized horizontal grain acceleration
ag(�g′)−1. At small Re∗, grain acceleration is negligible, and mobile grains always move with the
local fluid flow. At high Re∗ grains are significantly accelerated, and their momentum is lost through
collisions with the bed, which is indicated by the negative acceleration peak at the bed surface
for Re∗ ≈ 250 (green stars). The inset shows the average normalized horizontal grain acceleration
āg(�g′)−1 in the top layer and above (z/D > 5.25) as a function of Re∗. As Re∗ increases, average
normalized horizontal grain acceleration for mobilized grains increases until it plateaus for Re∗ > 10.
Together these data show how grain dynamics vary with Re∗ from viscous-dominated at low Re∗ to
acceleration-dominated at high Re∗, as discussed in Sec. I B.

Our results for �c(Re∗) in Fig. 5 display plateaus at low and high Re∗, denoted �l
c and �h

c ,
respectively. The behavior of the Shields curve at Re∗ < 1 is currently an open question. Most
hydraulic models [22,23,28] assume a decreasing trend of �c(Re∗) for Re∗ < 10. In simulations, we
observe a plateau [68,69] with �l

c ≈ 0.28, which numerically agrees with [68] as well as the data
shown in Fig. 1. We interpret this plateau as the shear force corresponding to the most geometrically
stable arrangement of the bed, suggesting that configurations that can resist � > �l

c do not exist.
As Re∗ is increased, �c decreases, as grain dynamics begin to transition out of the viscous regime
(Re∗ � 1). For Re∗ � 1, �c also displays a plateau �h

c that has the same value for linear and
quadratic drag laws. Note that, for a linear drag law, a larger fluid velocity is required to achieve the
same � when compared to a quadratic drag law.
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FIG. 7. The solid black curve with square markers is �c(Re∗) with the quadratic drag law (S-1 settings).
The thin curves with open circles represent �c(Re∗) for linear drag (S-3 settings) with en = 0.9 (red), 0.8
(green), 0.5 (black), 0.2 (blue), and 0.1 (magenta). Plateau values �l

c and �h
c for the curves from a linear drag

law are marked with thin black lines. The thicker, dashed line shows �h
0 , which is the minimum � at Re∗ � 1

required to initiate sustained grain motion for linear and quadratic drag for all values of en (S-1, S-2, and S-3
settings). As we discuss in Sec. III F, grain motion at Re∗ � 1 is always initiated at this boundary for large
systems.

C. Comparing linear and quadratic drag laws

The quadratic drag law in Eq. (2) naturally includes both τν and τI as defined in Sec. I B.
However, the linear drag law (S-2 and S-3 settings) only includes τν , not τI . In Sec. I B, we showed
that Re∗ ∝ τν/τ�, and we argued that the inertial time scale τI plays a secondary role since it is
always longer than τ� given typical grain and fluid densities. To justify this claim and to connect to
our previous work using a linear drag law [60], we show results in this section from 3D simulations
with linear (S-3 settings) and quadratic (S-1 settings) drag laws. We show below that �c(Re∗) and
the sediment transport rates are the same for linear and quadratic drag laws, provided en is small
when a linear drag law is used. If en is not small, then mobilized grains at Re∗ � 1 are accelerated
over time τν instead of being cut off by τI , leading to hysteresis at Re∗ � 1. We again note that � is
set by the typical force felt by surface grains, not by the velocity of the fluid. This means that when
comparing linear and quadratic drag at high Re∗, we use larger fluid velocities for the linear case to
obtain the same value of �, since we are neglecting the quadratic term in the drag laws shown in
Eqs. (2) and (7).

Figure 7 shows the boundaries between systems with and without sustained grain motion for
quadratic and linear drag laws. The thick black line with square markers shows the boundary
between systems with and without sustained grain motion using a quadratic drag law (S-1 settings),
representing both the transitions from a mobile to a static bed as well as from a static to a mobile
bed (i.e., we observe no hysteresis for a quadratic drag law). This boundary is independent of en.
The thin, colored lines with circle markers show the minimum � required to sustain grain motion
indefinitely, using a linear drag law (S-3 settings). The different colors (red, green, black, blue,
magenta) represent different restitution coefficients (en = 0.9, 0.8, 0.5, 0.2, and 0.1). As en → 0,
these boundaries form a single curve, with plateaus � = �l

c ≈ 0.28 and � = �h
c ≈ 0.11 at low

and high Re∗, respectively. Note that Niño and Garcı́a [59] showed experimentally that restitution
coefficients are typically small (en < 0.5) for saltating grains rebounding off a sediment bed. The
dashed, black line represents �h

0, which is the minimum � required to initiate sustained grain motion
from a static bed at Re∗ � 1. As we show in Sec. III F, sustained grain motion is always initiated
at this value in the large-system limit. We find that �h

0 is insensitive to the drag law and restitution
coefficient (i.e., �h

0 is constant for S-1, S-2, and S-3).
When Re∗ � 1, the linear (S-2 and S-3 settings) and quadratic (S-1 settings) drag laws agree,

and our simulations show identical results. Grain flux tends to zero and stopping times diverge at a
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FIG. 8. For simulations with Re∗ � 1 using S-1 and S-3 settings, the dimensionless volumetric grain flux
per cross stream width q/

√
g′D3 (a) and the dimensionless stopping time (ts − t0)

√
g′/D (b) are plotted vs �.

Data in (a) represent the ensemble average over ten systems with quadratic drag, where the data are averaged
over all systems that were still in motion. Intermediate times are given by blue (short times) to red (long times)
dashed lines with square markers, and the black line represents the end of the simulation. If more than half of
the simulations had stopped, then q = 0. Data in (b) represent the mean stopping time for ensembles where
grain motion ceased in at least half of the simulations. Curves show quadratic (black squares, S-1 settings) and
linear (S-3 settings) drag laws with en = 0.5 (black open circles) and 0.2 (blue open circles). Additionally, in
(c), we compare the grain flux vs � for the cases of linear and quadratic drag, where we also include the flux
for en = 0.1 (magenta open circles). Despite the fact that the drag laws have different forms, the curve q(�)
approaches the quadratic case near �c as en → 0.

critical value �l
c ≈ 0.28. Figure 8 shows representative data for Re∗ � 1. As discussed in Sec. II B,

we begin with a mobilized system, where grains are suspended, and apply the model fluid flow.
�c is characterized by a grain discharge per unit width that tends to zero and diverging stopping
times for � just below �c. We characterize the grain motion by plotting q/

√
g′D3, where q is the

discharge per unit width. The dashed curves in Fig. 8(a) show q/
√

g′D3 at different times (blue to red
represents increasing time), where each data point is obtained from an ensemble of ten simulations
using S-1 settings. Each data point with a nonzero q means that in at least half of the simulations the
grains did not stop, and the value of q represents the average of all simulations where grains were
still in motion. The solid black curve represents the steady-state grain flux (measured at the end of
the simulation). If in at least half of the simulations, the grains stopped, we measure the average
time ts that it took the grains to stop moving. Figure 8(b) shows (ts − ts,0)

√
g′/D plotted versus �

for quadratic drag (S-1 settings) and linear drag (S-3 settings). Figure 8(c) shows q versus � for
quadratic and linear drag. We find that q tends to zero and ts diverges at roughly the same value
of �. As en → 0 for linear drag, the critical � approaches the value for the quadratic drag law,
� = �h

c ≈ 0.11.
Thus, at Re∗ � 1, we find that using linear (with small en) and quadratic drag laws give the same

value of �c as well as the same dependence of q versus �. Under a linear (viscous only) drag law,
grains can be accelerated to much larger speeds, since τν ∝ Re∗ for all Re∗, and the equilibration
time is not cut off by τI . Thus, in simulations with a linear drag law, mobile grains can deliver
significant energy when they impact the bed and can rebound to large heights above the bed from
elastic collisions (not lift forces) if en is large. These effects are suppressed when en is small and �

is near �c, and the behavior of q(�) for linear drag approaches the q(�) curve for quadratic drag
as en → 0. In this case, the trajectory of mobilized grains is confined to positions near the bed, and
viscous and inertial drag laws yield the same behavior very close to �c.

D. Including model lift forces

The results of our model do not quantitatively capture the global minimum in the Shields curve at
Re∗ ≈ 10 and overestimate �c by roughly a factor 2 at high Re∗. However, in this model we neglected
lift forces and turbulence, and thus we expect to overpredict �c in this regime. For instance, the
calculation from Wiberg and Smith [24] discussed in Sec. I A and shown in Fig. 1 could be combined
with our model to capture Re∗-dependent lift forces. To demonstrate the viability of this approach,
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FIG. 9. We plot �c(Re∗,
Fl

Fd
) vs Re∗ with Fl

Fd
= 0, 1, 2, and 3. As Fl

Fd
is increased, �c(Re∗,

Fl

Fd
) decreases

according to Eq. (12). Quantitatively capturing the Shields curve would require an Re∗-dependent lift force, as
shown in Fig. 1 from [24].

in this section we show that lift forces decrease �c in a way that is quantitatively consistent with
Eq. (1).

Figure 9 shows the results of 3D simulations with quadratic drag and constant lift forces (S-4
settings) which are not Re∗-dependent. We vary Fl

Fd
from 0 to 3, and the corresponding curves

�c(Re∗, Fl

Fd
) decrease, as expected. The magnitude of these curves follows the scaling shown in

Eq. (1), but where cot ψ is replaced by 3
2�c(Re∗,0), which is the ratio of horizontal to vertical forces

required in simulations at varying Re∗:

�c

(
Re∗,

Fl

Fd

)
= �c(Re∗,0)

1

1 + 3
2�c(Re∗,0) Fl

Fd

. (12)

We reiterate that the model lift forces we include have constant Fl

Fd
, whereas physical systems likely

have lift forces that vary strongly with Re∗. It is possible that a scaling function 1
1+ 3

2 �c(Re∗,0) Fl
Fd

that

is directly calculated from the Re∗-dependent fluid forces could by combined with our results to
quantitatively recapitulate the Shields curve over the full range of Re∗.

E. Friction, shape, and dimension

In this section, we use 2D simulations (S-5 and S-6 settings) to show that �c(Re∗) is only
weakly dependent on friction and irregular grain shape. These results are shown in Fig. 10. In two
dimensions, the numerical values for �c increase by roughly a factor of 2. We interpret the increase
in �c from three to two dimensions to follow from the fact that the energy landscape of a 2D bed is
more difficult for grains to navigate, as grains must roll over obstacles instead of traversing the low
points between impeding grains. This raises important questions about whether and how quasi-2D
calculations of pocket angles relate to 3D systems.

We perform simulations in two dimensions with a linear drag law where grain-grain interactions
include Cundall-Strack friction (S-5 settings) or geometrical friction from irregular grain shape (S-6
settings). We find hysteresis that vanishes in the limit of small en, as in three dimensions (Fig. 7),
and we plot the small en values in Fig. 10, which correspond to the result with a quadratic drag law.
Figure 10 shows the values of the plateaus �l

c and �h
c as friction is varied. Circles represent disks

with Cundall-Strack friction, with a friction coefficient μ. Other symbols correspond to n-mers with
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FIG. 10. The plateau values �l
c and �h

c = �h
0 (for quadratic drag or small en) are plotted as a function of

friction coefficient μ or μeff . Solid lines with open circles show data for disks with Cundall-Strack friction
(S-5 settings). Other open symbols correspond to irregularly shaped grains (S-6 settings) with n = 2 (diamonds),
3 (triangles), 4 (squares), and 5 (stars).

n = 2 (diamonds), 3 (triangles), 4 (squares), and 5 (stars). Both �l
c and �h

c increase by less than
50% with increasing friction, which is still comparable to the scatter in the experimental and field
data shown in Fig. 1. We note that Joseph and Hunt [70] found a friction coefficient of μ ≈ 0.15 for
submerged spheres, and we observe almost no variation in �l

c and �h
c for friction coefficients at or

below this measured experimental value.

F. Onset of grain motion

Thus far, we have argued that grain dynamics at varying Re∗ play a dominant role in determining
�c(Re∗), as opposed to static force and torque balance of individual grains in typical pocket
geometries. However, the onset of grain motion must follow from a breakdown of force and torque
balance on one or more grains [71]. In this section, we show data (using S-7 and S-8 settings) for
the initiation of sustained grain motion (i.e., the static-to-mobile transition), which, in the limit of
large systems, always occurs at the same dynamical boundary �c(Re∗) that denotes the minimum
applied fluid stress at which mobilized systems are unable to stop. We show that local motion
in one of many uncorrelated subsystems leads to global sustained grain motion using Weibullian
weakest-link statistics [72,73]. Additionally, we find that the characteristic time tm for the bed to
fully mobilize diverges at �c, consistent with a dynamical instability at � = �c that is activated by
a single mobilized region.

If we consider the bed to be a composite system of M uncorrelated subsystems that begin to
move if any of the subsystems move at � > �c (when grain motion will be sustained indefinitely),
then the cumulative distribution CM (�) for the initiation of grain motion in the collective system is
related to that of a single subsystem C(�) by

1 − CM (�) = [1 − C(�)]M. (13)

By assuming a Weibull distribution for C(�) [72–74],

C(�) = 1 − exp

[(
� − �c

β

)α]
, (14)
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FIG. 11. (a) The probability distributions P (�f ) of the Shields number �f required to initiate sustained
grain motion in an initially static 3D system as � is slowly increased at high Re∗, computed with a quadratic drag
law (S-7 settings). The vertical dashed line represents � = �h

c . These ensembles, consisting of 200 simulations
at each system size, were prepared with � = 0.033 < �c, a fill height 5D, a cross-stream width of 4D, and a
streamwise distance W/D, which we vary between 2.5 and 40. The inset shows that these distributions collapse
when rescaled by �̄f − �h

c , and the thick black line shows a Weibull distribution with shape parameter α = 2.2.
(b) The mean excess stress �̄f − �h

c for the initiation of sustained grain motion decreases as a power law with
exponent −1/α, in accordance with Eqs. (13) and (14). (c) The mean normalized mobilization time tm

√
g′/D,

binned and averaged over �. tm is defined as the time required for the grain flux q to rise from zero to the
steady-state value.

then CM (�) in Eq. (13) has the same form with αM = α and βM = βM−1/α . As in our previous
study [60], we find that this scaling holds for all systems we have considered here. This means that
Eq. (13) applies, confirming that global grain motion is initiated by a single member of a collection
of uncorrelated subsystems (i.e., local pockets). In the limit of large system size, we find that grain
motion is always initiated at �c.

For a given system with static grains, we slowly increase � until sustained grain motion occurs
at � = �f > �c. Figure 11(a) shows the distributions of the excess stress �f − �c required to
initiate sustained grain motion in ensembles of static 3D quadratic-drag systems (S-7 settings) as �

is slowly increased. These ensembles are prepared at � ≈ 0.067 < �c with a fill height of 5D and
a cross stream width of 4D, and we vary the streamwise distance W/D between 2.5 and 40. These
distributions collapse when rescaled by their mean, as shown in the inset, with a shape parameter
α ≈ 2.2. This value is comparable to that measured in the frictionless, elastic case, where we found
α ≈ 2.6 [60]. The scaling of mean excess stress �̄f − �c, as shown in Fig. 11(b), is consistent with
a power law scaling with exponent −1/α, confirming Eqs. (13) and (14). For systems that fail, we
measure the mobilization time tm, which we define as the time required for the grain flux q to go
from zero to the steady-state value. This quantity is plotted versus � in Fig. 11(c), and it diverges at
�c, like the divergence of ts shown in Fig. 8.

Figure 12 shows the same data, but for 2D systems using Cundall-Strack friction with μ = 0.6
and the grain-asperity model with μeff = 0.6 (S-8 settings). Our results are again consistent with
Eqs. (13) and (14) with α ≈ 2.4. We note that the primary difference between the frictionless
case [60] and the frictional results shown here is in the effective system size Meff = WeffHeff . In
systems with tangential forces, where W is larger than a few grains, we find that Meff = W , and
the system height is nearly irrelevant. For frictionless disks, Heff is calculated by integrating the
probability of the initiation of grain motion over the depth of the system, which is equal to the
fluid force profile. Thus, friction strongly suppresses the initiation of surface grain motion from
rearrangements below the surface.

We also note that the initiation of grain motion in systems with tangential forces depends on
preparation history in a way that is different from frictionless systems. Specifically, systems with
tangential contact forces that settle at a larger value of � tend to fail at larger values of �f . In
frictionless simulations, we found no variation of the statistics of �f with the value of � at which
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FIG. 12. (a) The probability distributions P (�f ) of the Shields number �f where sustained grain motion
is initiated ensembles of 2D, frictional, static systems, computed with a linear drag law (S-8 settings). The
dashed vertical line represents �0, which is equivalent to �c when en is small. Open symbols correspond to
systems that settled at � = 0.033: disks with Cundall-Strack friction with μ = 0.6 and fill height 10D (open
black circles), as well as grain clusters (5-mers with μeff = 0.6) with fill heights of 10D (open red stars),
20D (open green stars), and 40D (open blue stars), where the size of these symbols increases with fill height.
The inset shows that these distributions collapse when rescaled by �̄f − �0, and the thick black line shows a
Weibull distribution with shape parameter α = 2.4. (b) The mean excess stress for the initiation of grain motion
�̄f − �0 decreases as W−1/α , in accordance with the behavior of Eqs. (13) and (14).

the system settled. The open stars shown in Fig. 12 settled at � = 0.033, whereas the filled red stars
settled at � = 0.067. Settling at a larger value of � makes these systems statistically stronger on
average but does not affect �c.

IV. DISCUSSION

In this paper, we introduced a physical mechanism for how Re∗-dependent grain dynamics can
affect the critical applied fluid stress �c required to sustain permanent grain motion. Using numerical
simulations, we showed that the minimum dimensionless shear force to maintain grain motion can
be described by a function �c(Re∗) that consists of two distinct regimes. At Re∗ < 1, grain dynamics
are viscous dominated, and grains are not significantly accelerated between interactions with the bed.
This means that grains are unlikely to bounce over a stable surface configuration or disrupt existing
pockets during interactions with surface grains. In this regime, more geometrical configurations are
available to grains as they search for stability, and grains find a state that is stable to a maximum
Shields number of �l

c ≈ 0.28. At Re∗ > 10, grains are accelerated significantly between interactions
with the bed. Based on the physical reasoning given in Sec. I B, this makes some geometrical
configurations inaccessible to the grains. This picture is confirmed by our numerical results, where
grains that are sheared by the exact same fluid flow at Re∗ > 10 are unable to find the configurations
that are stable in the region �h

c < � < �l
c, where �h

c ≈ 0.11.
These results suggest that the most common physical picture of the onset of sediment transport,

namely the conditions at which static equilibrium is violated for surface grains, should be updated to
include grain reorganization dynamics. The divergence of the transition times ts and tm at � = �c

suggest the existence of a dynamical instability. Theories that account for when mobile grains
can stop may be more successful than simply focusing on when static grains can first move. The
roughness and geometry of the granular bed must play a role, but its role should be expanded
from a focus on pocket angles of surface grains to a broader picture that describes the dynamics of
grains as they traverse a rough, granular bed. In our theoretical analysis, we include this effect by
assuming that grains will collide with the bed after moving roughly one grain diameter. This picture
is supported by the data shown in Fig. 6.
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Our results also suggest that previous approaches, which analyzed a single representative pocket
geometry of a surface grain, could possibly be improved by accounting for the distribution of pocket
geometries. Such an approach is similar in spirit to the results presented in Sec. III F, where for
large systems we find that grain motion will always be initiated somewhere in the system once �

exceeds �c. We argue that the grain dynamics that follow the initial force imbalance are important.
Unsteadiness in the fluid flow, from turbulence or other external sources of fluctuations, can initiate
grain motion, which will then be sustained only above the dynamical boundary �c. Our simulations
do not include explicit temporal fluctuations, and there are likely important differences that arise
when turbulence or other unsteadiness in the fluid stress is included, such as intermittency and
fluctuations in the grain dynamics near �c [75].

Finally, the boundaries �c(Re∗) for simulations with linear and quadratic drag laws show strong
agreement. At Re∗ � 1, these two approaches are expected to agree, since Stokes drag dominates
in both cases. However, at Re∗ � 1, such good agreement is quite surprising. This means that, with
regard to how grains search for stable configurations to an applied shear force, the form of the drag
law is not important. The only relevant parameters are the shear stress �, the bed collision time τ�,
and the characteristic time for a grain to equilibrate to the flow, which is given either by τν or τI . For
Re∗ � 1, the fluid equilibration time scales are always longer than the bed collision time scale. Thus,
the minimum value of � to initiate sustained grain motion from a static bed is the same for both
drag laws. For a linear drag law, we note that large restitution coefficients cause grains to bounce up
into the fluid flow and accelerate in a way that is physically unreasonable in subaqueous sediment
transport. This is the cause of the hysteresis shown in Fig. 7 and in Fig. 2 of our prior work [60]. When
en is decreased, these effects are suppressed and the hysteresis vanishes. For linear drag with small
en and quadratic drag for all en, the onset and cessation of grain motion occur at the same boundary,
since the dominant physics relates to surface grain dynamics. However, we note that for the case
of Aeolian sediment transport, the sediment grains are much denser than air, ρg/ρf ∼ 2000, which
yields τI /τ� ∼ 40–50. This means saltating grains are substantially accelerated, and grain-grain
collisions can be relatively elastic upon collision with the bed. Under these conditions, our results
predict hysteresis, where motion is sustained by fast moving grains colliding with the bed [48,76]
as in our simulations with a linear drag law and large en.

Future work will focus on microstructural differences between contact geometries in the different
regimes of Re∗. Our results show that grains at Re∗ > 10 are unable to find configurations that are
stable to an identical applied shear force profile at Re∗ < 1. Understanding the structure of these
grain configurations may clarify why they are inaccessible at high Re∗.
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APPENDIX: FRICTIONAL FORCES—GEOMETRICAL ASPERITY
AND CUNDALL-STRACK MODELS

In the grain-asperity model, shown in Figs. 13(a), 13(b), and 3(b), we use clusters of n disks of a
fixed size d. The centers of the disks lie on a circle of radius a, spaced at angular intervals of 2π/n.
The nonoverlapping area Ai of each cluster is calculated and the effective diameter for use in setting
the fluid drag force is Di = √

4Ai/π . We assume that small disks on each grain cluster interact via
purely repulsive linear spring forces. These forces do not generally act through the center of mass of
the cluster, and therefore generate torques. This means that the sum over j in Eqs. (5) and (6) now
includes multiple contacts between clusters i and j . In this way, macroscopic geometrical friction
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FIG. 13. (a) A depiction of the grain-asperity model [66,67]. Grain clusters are composed of n frictionless
disk-shaped asperities, each with diameter d , with their centers regularly spaced on a circle of radius a.
Arrows show the direction of contact forces, and solid lines connect the contact point to the center of the
cluster. The angle ψ between the arrows and solid lines sets the ratio of tangential F t

ij and normal F r
ij

components of the contact forces, and thus the maximum ratio max(F t
ij /F

r
ij ) = μeff is set purely by geometry.

(b),(c) Packings constructed from (b) grain clusters and (c) disk-shaped grains with Cundall-Strack friction [64],
both containing 25 grains, using an athermal packing generation protocol [77]. Grain clusters shown here have
n = 5 and a/d = 0.6, which gives μeff = 0.6 for two grains of the same size. The center grain in panel (a) is
contacting the grain to its left with F t

ij /F
r
ij = μeff . The disk-shaped grains with Cundall-Strack friction have

μ = 0.6 to match the grain clusters. Panels (d) and (e) show histograms of the ratio F t
ij /F

n
ij for all contact

forces in (b) and (c), respectively.

is introduced via the asperities, as is the case in natural systems, where grains of sand or gravel are
almost never spherical.

In the second approach, shown in Figs. 13(c) and 3(c), grains are represented by disks that interact
via Cundall-Strack friction [64], which approximates microscopic friction through the use of linear
tangential springs at intergrain contacts with tangential force F t

ij = −Ktu
t
ij , where Kt = K/3 and

ut
ij is the relative displacement of the point of contact between grains i and j . At each contact, we

enforce the Coulomb sliding condition, F t
ij � μF r

ij , where μ is the static friction coefficient. When
F t

ij exceeds μF r
ij , we set ut

ij = μF r
ij /Kt , and the grains slide relative to each other.

For the case of the grain-asperity model (please see Table II), the value of F t
ij /F

r
ij is determined

by local geometry at the points of contact, with F t
ij /F

r
ij � μeff , where μeff corresponds to the case of

an asperity from one cluster contacting two asperities from a different cluster. For the Cundall-Strack
model, the value of F t

ij /F
r
ij depends on the history of the contact, i.e., the accumulated tangential

displacement ut
ij . Figure 13 shows a comparison of packings generated with μ = μeff = 0.6. The

distributions of F t
ij /F

r
ij are similar for the two models; both have a maximum near 0.6 and a broad

distribution below the maximum. Note that μeff for contacts between two clusters of the same size is
0.6, whereas μeff can be larger for an asperity from a small grain that is in contact with a asperities
on a large grain.
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TABLE II. A list of the characteristics for different simulations of the grain-
aspertiy model, where n is the number of disk-shaped asperities per grain, a/d

is the distance from the center of each disk-shaped asperity to the center of the
grain, and μeff is the maximum ratio of F t

ij /F
n
ij .

n a/d μeff

2 0.1 0.2
2 0.2 0.42
2 0.4 1.06
3 0.2 0.33
3 0.4 0.7
3 0.5 0.93
3 0.75 2
4 0.5 0.65
4 0.75 1.1
4 1 2
5 0.1 0.11
5 0.4 0.4
5 0.6 0.6
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[65] J. Schäfer, S. Dippel, and D. E. Wolf, Force schemes in simulations of granular materials, J. Phys. I 6, 5
(1996).
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