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Stress anisotropy in shear-jammed packings of frictionless disks
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We perform computational studies of repulsive, frictionless disks to investigate the development of stress
anisotropy in mechanically stable (MS) packings at jamming onset. We focus on two protocols for generating
MS packings at jamming onset: (1) isotropic compression and (2) applied simple or pure shear strain γ at
fixed packing fraction φ. MS packings of frictionless disks occur as geometric families (i.e., quasiparabolic
segments with positive curvature) in the φ-γ plane. MS packings from protocol 1 populate parabolic segments
with both signs of the slope, dφ/dγ > 0 and dφ/dγ < 0. In contrast, MS packings from protocol 2 populate
segments with dφ/dγ < 0 only. For both simple and pure shear, we derive a relationship between the stress
anisotropy and local dilatancy dφ/dγ obeyed by MS packings along geometrical families. We show that for
MS packings prepared using isotropic compression, the stress anisotropy distribution is Gaussian centered at
zero with a standard deviation that decreases with increasing system size. For shear jammed MS packings, the
stress anisotropy distribution is a convolution of Weibull distributions that depend on strain, which has a nonzero
average and standard deviation in the large-system limit. We also develop a framework to calculate the stress
anisotropy distribution for packings generated via protocol 2 in terms of the stress anisotropy distribution for
packings generated via protocol 1.
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I. INTRODUCTION

For systems in thermal equilibrium, such as atomic and
molecular liquids, macroscopic quantities, such as the shear
stress and pressure, can be calculated by averaging over the
microstates of the system weighted by the probabilities for
which they occur, as determined by Boltzmann statistics [1].
In contrast, granular materials, foams, emulsions, and other
athermal particulate media are out of thermal equilibrium and
this formalism breaks down [2,3].

For dense, quasistatically driven particulate media, the
relevant microstates are mechanically stable (MS) packings
with force and torque balance on all grains [4,5]. In contrast
to thermal systems, the probabilities with which MS packings
occur are highly nonuniform and depend on the protocol that
was used to generate them [6]. For example, it has been shown
that MS packings generated via vibration, compression, and
pure and simple shear possess different average structural
and mechanical properties [7–10]. In previous work on static
packings of purely repulsive frictionless disks at jamming on-
set, we showed that the differences in macroscopic properties
do not occur because the collections of microstates for each
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protocol are fundamentally different; instead, the probabilities
with which different MS packings occur change significantly
with the protocol [9]. Thus, it is of fundamental importance to
understand the relationship between the packing-generation
protocol and MS packing probabilities.

Jamming, where an athermal particulate system transitions
from a liquidlike to a solidlike state with a nonzero yield
stress, induced by isotropic compression has been studied
in granular and other athermal materials for more than 20
years [7,11,12]. Recently, Bi et al. showed that packings of
granular disks can jam via simple and pure shear at fixed
area [8]. This was a surprising result because many previous
studies had emphasized that the application of shear at fixed
packing fraction gives rise only to flow and unjamming be-
havior. This point is emphasized in the schematic jamming
phase diagram in the stress � and packing fraction φ plane in
Fig. 1(a), which shows that the yield stress �y increases with
φ above jamming onset φJ at zero shear. Here, we assume
that �y ∼ (φ − φJ )ν , where ν = 0.5. In Fig. 1(b), we flip the
axes and plot the packing fraction versus shear strain, which
increases quadratically from φJ . In both Figs. 1(a) and 1(b),
increasing the shear strain does not give rise to jamming.
However, we will show below that this picture is incomplete,
and the application of shear strain can cause unjammed sys-
tems of frictionless, spherical particles to jam [9,13].
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FIG. 1. (a) A schematic jamming phase diagram in the stress
� and packing fraction φ plane. The solid line indicates the yield
stress �y (φ). For applied stress � < �y , the system is jammed
and for � > �y , the system flows and is unjammed. We assume
that the yield stress obeys �y ∼ (φ − φJ )ν , where ν = 0.5 and φJ

is the jammed packing fraction in the absence of shear stress. (b)
A jamming phase diagram similar to that in (a) except rendered in
the φ-γ plane. The jammed packing fraction increases quadratically
with strain from φJ . With the jamming phase diagrams in (a) and
(b), increasing strain does not cause a system to transition from
unjammed to jammed states.

Despite important work [9,13,14] since the original article
by Bi et al., there are still many open questions concerning
shear jamming. For example, (1) can shear jamming occur
in MS packings of frictionless grains and if so, do these
shear-jammed packings possess a nonzero stress anisotropy?
and (2) are there substantive differences between MS packings
generated via isotropic compression versus shear?

Our recent work has shown that mechanically stable
packings of frictionless spherical particles at jamming on-
set can be obtained via either simple shear or isotropic
compression and that the probability for a particular packing
depends on the packing-generation protocol [9]. The average
shear strain required to jam an originally unjammed config-
uration can be written in terms of the basin volume, density
of jammed packings, and path in configuration space from
the initial condition to the final MS packing. This previous
work focused mainly on the shear strain γJ needed to jam
an initially unjammed configuration and how the shear strain
γJ depends on the packing fraction. In the current article, we
instead focus on the shear stress anisotropy in MS packings
generated by isotropic compression versus pure and simple
shear.

Our computational studies yield several key results, which
form a more complete picture of shear jamming in packings of
frictionless spherical particles. First, we identify relationships

between the stress anisotropy and the packing fraction and its
derivative with respect to strain (dilatancy) for MS packings
generated via simple and pure shear. These relationships allow
us to calculate the stress anisotropy, which includes contribu-
tions from both the shear stress and normal stress difference,
for MS packings by only knowing how the jammed packing
fraction varies with strain.

Second, we confirm that the distribution of the stress
anisotropy for isotropically compressed packings is a Gaus-
sian centered on zero with a width that decreases as a power
law with increasing system size N [15]. In contrast, the stress
anisotropy distribution is a convolution of strain-dependent
Weibull distributions with a finite average and standard de-
viation in the large-system limit for shear-jammed MS pack-
ings [16]. Third, using the relation between stress anisotropy
and local dilatancy, we predict the stress anisotropy distribu-
tion for shear-jammed packings using that for MS packings
generated via isotropic compression. We also calculate the
fabric tensor for packings generated via isotropic compression
and shear jamming. We show that the principal components
of the fabric and stress tensors are uniformly distributed for
packings generated via isotropic compression, whereas they
are oriented along the compressive and dilational directions
for shear-jammed packings.

The remainder of the article includes four sections and
four Appendices, which provide additional details to support
the conclusions in the main text. In Sec. II, we describe the
two main protocols that we use to generate MS packings and
provide definitions of the stress tensor and stress anisotropy.
Section III includes five subsections, which introduce the con-
cept of geometrical families, derive the relationships between
the stress tensor components and local dilatancy, describe the
analysis of the fabric tensor for isotropically compressed and
shear-jammed packings, develop a framework for calculating
the shear stress distribution for shear-jammed packings in
terms of the shear stress distribution for isotropically com-
pressed packings, and show the system-size scaling of the
stress anisotropy. In Sec. IV, we give our conclusions, as
well as describe interesting future computational studies on
shear-jammed packings of nonspherical particles, such as
circulo-polygons [17], and frictional particles [5], where we
can apply the techniques developed in the present article.

II. METHODS

Our computational studies focus on systems in two spatial
dimensions containing N frictionless bidisperse disks that
interact via the purely repulsive linear spring potential given
by V (rij ) = ε

2 (1 − rij /σij )2�(1 − rij /σij ), where ε is the
strength of the repulsive interactions, rij is the separation be-
tween the centers of disks i and j , σij = (σi + σj )/2, σi is the
diameter of disk i, and �(·) is the Heaviside step function that
prevents nonoverlapping particles from interacting. The sys-
tem includes half large disks and half small disks with diame-
ter ratio r = 1.4. The disks are confined within an undeformed
square simulation cell with side lengths, Lx = Ly = 1, in
the x and y directions, respectively, and periodic boundary
conditions. Isotropic compression is implemented by chang-
ing the cell lengths according to L′

x = Lx (1 − dφ/2φ) and
L′

y = Ly(1 − dφ/2φ) and corresponding affine shifts in the
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FIG. 2. (a) Schematic of the packing fraction φ and simple shear
strain γ plane that illustrates the two main protocols used to generate
MS disk packings at jamming onset. As shown in Fig. 3(e), the
jammed regions are bounded by quasiparabolic segments. In protocol
1, the system is first deformed to simple shear strain γt at small initial
packing fraction φi ≈ 0 [point (b)] and then isotropically compressed
to jamming onset at φt [point (c)]. In protocol 2, the system is first
compressed to φt below jamming onset [point (d)] at γ = 0 and then
sheared to jamming onset at simple shear strain γt [point (e)]. Points
(c) and (e) correspond to the same total deformation, and thus the two
protocols can yield the same MS packing. Note that for each system
size N , there are many distinct parabolas that occur over a range of
strain and packing fraction. As the system size increases, the typical
parabolic segment size decreases as 1/N and the range of packing
fraction over which the parabolic segments occur shrinks to zero.

particle positions, where dφ < 10−4 is the change in packing
fraction. Simple shear strain with amplitude γ is implemented
using Lees-Edwards periodic boundary conditions, where the
top (bottom) images of the central cell are shifted to the right
(left) by γLy with corresponding affine shifts of the particle
positions [18]. Pure shear is implemented by compressing the
simulation cell along the y direction and expanding it along
the x direction with corresponding affine shifts of the particle
positions. The system area is kept constant (i.e., A = L′

xL
′
y =

LxLy) and the pure shear strain is defined as γ = ln(L′
x/L

′
y ).

As shown in Fig. 2, we employ two main protocols to gen-
erate MS packings in the packing fraction φ and shear strain γ

plane. For protocol 1, we first place the disks at random initial
positions in the simulation cell, and apply successive simple
shear strain steps dγ < 10−4 to total strain γt at fixed small
packing fraction φi = 0.1. We then isotropically compress the
system in small packing fraction increments dφ to jamming
onset φJ at fixed simple shear strain γ = γt . For protocol 2,
we first place the disks at random initial positions and then
isotropically compress the system to a target packing fraction
φt < φJ at simple shear strain γ = 0. We then apply simple
shear to the system in small strain steps dγ until the system
jams at γJ . For protocol 2, the target volume fraction φt varies
from φm, below which no shear-jammed packings can be
found in the range 0 < γ < 1 to φJ obtained from isotropic
compression at γ = 0. In Appendix A, we also include results
for a packing-generation protocol similar to protocol 2, except
we apply pure instead of simple shear strain.

The total potential energy per particle U = U ′/Nε, where
U ′ = ∑

i>j V (rij ), is minimized using the conjugate gradient
technique after each compression or shear step. Minimization
is terminated when the potential energy difference between
successive conjugate gradient steps satisfies �U/U < 10−16.
We define jamming onset when the total potential energy per
particle obeys Umax < U < 2Umax, with Umax = 10−16. This
method for identifying jamming onset is similar to that used
in our previous studies [9].

The systems are decompressed (for protocol 1) or sheared
in the negative strain direction (for protocol 2) when U at
a local minimum is nonzero, i.e., there are finite particle
overlaps. If the potential energy is “zero” (i.e., U < 10−16),
the system is compressed (for protocol 1) or sheared in the
positive strain direction (for protocol 2). For protocol 1, the
increment by which the packing fraction is changed at each
compression or decompression step is halved each time U

switches from zero to nonzero or vice versa. Similarly, for
protocol 2, the increment by which the shear strain is changed
at each strain step is halved each time U switches from zero
to nonzero or vice versa. These packing-generation protocols
yield mechanically stable packings (with a full spectrum of
nonzero frequencies of the dynamical matrix [19]) at jamming
onset. In addition, all of the MS disk packings generated via
protocols 1 and 2 are isostatic, where the number of contacts
matches the number of degrees of freedom, Nc = N0

c , with
N0

c = 2N ′ − 1, N ′ = N − Nr , and Nr is the number of rattler
disks with fewer than three contacts [20].

For each MS packing, we calculate the stress tensor:

�βδ = 1

A

∑
i �=j

fijβrijδ, (1)

where A = LxLy is the system area, fijβ is the β component
of the interparticle force on particle i due to particle j , rijδ

is the δ component of the separation vector from the center
of particle j to that of particle i, and β and δ = x, y. From
the components of the stress tensor, we can calculate the pres-
sure P = (�xx + �yy )/2, the normal stress difference �N =
(�yy − �xx )/2, and the shear stress −�xy . We define the

normalized stress anisotropy to be τ̂ =
√

�̂2
N + �̂2

xy , where
�̂N = �N/P and �̂xy = −�xy/P . τ̂ includes contributions
from both the shear stress and the normal stress difference.
We will show below that the shear stress (normal stress
difference) is the dominant contribution to τ̂ for MS packings
generated via simple shear (pure shear) in the large-system
limit. Therefore, we will focus on �̂xy when we study pack-
ings generated via simple shear and on �̂N when we study
packings generated via pure shear. See Appendix A for most
of the results on pure shear. We calculate mean values and
standard deviations of the stress tensor components between
103 and 105 distinct MS packings.

III. RESULTS

A. Geometrical families

As background, we review the structure of geometrical
families during shear deformation [9,21]. In Fig. 3(a), we
illustrate that MS packings occur as geometrical families in
the jammed packing fraction φ and shear strain γ plane. MS
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FIG. 3. (a) Packing fraction φ at jamming onset as a function
of simple shear strain γ for MS packings with N = 6 generated
via isotropic compression (protocol 1) and (b) the corresponding
magnitude of the shear stress |�̂xy | versus γ . The data in (a) and
(b) were obtained using the same single set of random initial con-
ditions. Panels (c) and (d) show the MS packings near the start
and end of a geometrical family, indicated by the filled triangles in
(a). Each geometrical family in (a), as well as the families obtained
from other random initial conditions, can be described by parabolic
segments, φ = A(γ − γ0 )2 + φ0, in the φ-γ plane, where A > 0, φ0,
and γ0 are the curvature, packing fraction offset, and strain offset
for each geometrical family. Panels (e) and (f) show the normalized
coordinates, (φ − φ0)/A versus γ − γ0, for all MS packings with
N = 6 generated via protocols 1 and 2, respectively. Protocol 1 gen-
erates packings with both signs of dφ/dγ , whereas protocol 2 only
generates packings with dφ/dγ < 0. The jammed and unjammed
regions of the (φ − φ0)/A and γ − γ0 plane are indicated.

packings in the same geometrical family have the same inter-
particle contact network and form continuous quasiparabolic
segments in the φ-γ plane. In panel (a), the N = 6 MS pack-
ings were generated using isotropic compression (protocol 1)
from a single random initial condition. In Figs. 3(c) and 3(d),
we highlight two MS packings near the beginning and end of
the geometrical family indicated by the filled triangles in (a).
The system switches from one geometrical family to another
when the interparticle contact network becomes unstable. The
beginning and end of each geometrical family can be identi-
fied by finding changes in the interparticle contact network or
discontinuous changes in φ(γ ) or the slope dφ/dγ .

We assume that each geometrical family of MS packings
forms a parabolic segment in the φ-γ plane described by
φ(γ ) = A(γ − γ0)2 + φ0, where A, γ0, and φ0 give the curva-
ture, strain offset, and packing fraction offset for each family.
The curvature satisfies A > 0 for all geometrical families of
MS disk packings. In Figs. 3(e) and 3(f), we show that the
data collapse onto a parabolic form when we plot (φ − φ0)/A
versus γ − γ0 for all geometric families we found using

protocols 1 and 2, respectively, with more than 105 initial
conditions.

For protocol 1, we obtain families with both dφ/dγ > 0
and dφ/dγ < 0, and thus the rescaled φ(γ ) in Fig. 3(e)
includes both sides of a parabola. However, for protocol 2, the
geometrical families only possess dφ/dγ < 0. This result is
nontrivial since MS packings generated via quasistatic simple
shear at near zero pressure can possess both dφ/dγ < 0 and
dφ/dγ > 0 (see Appendix B). To understand the result that
shear-jammed packings possess dφ/dγ < 0, first assume that
a system with packing fraction φ is unjammed at shear strain
γ and that the system becomes jammed after the next applied
shear strain step γ + dγ . The jamming threshold for the
system at γ , φJ (γ ), must be larger than the packing fraction
of the system, φ. Since the jamming threshold at γ + dγ ,
φJ (γ + dγ ), is equal to φ, we have φJ (γ + dγ ) < φJ (γ ),
which indicates that dφ/dγ < 0 along each geometrical fam-
ily for protocol 2.

For protocol 1, the systems approach the jammed region
from below, and thus they can reach both sides of the parabo-
las with dφ/dγ < 0 and dφ/dγ > 0. For protocol 2, the
systems approach the jammed region from the left, and thus
they jam when they reach the left sides of the parabolas with
dφ/dγ < 0. Note the key difference in the signs of the slope,
dφ/dγ , between the jamming phase diagrams in Figs. 1(b)
and 3(f). The schematic jamming phase diagram in Fig. 1(b)
is missing the portion of the parabola with dφ/dγ < 0.

The geometrical family structure can also be seen in the
shear stress versus strain as shown in Fig. 3(b). In this case,
the shear stress |�̂xy | varies quasilinearly with γ . For MS
packings within a given geometrical family, we find that |�̂xy |
increases with φ and |�̂xy | ≈ 0 when φ(γ ) is near a local
minimum or maximum (i.e., ∂φ

∂γ
= 0). Although we illustrated

these results for a small system, we showed in previous
studies [9] that the geometrical family structure persists with
increasing system size. In the large-system limit, the family
structure occurs over a narrow range of φ near φJ ≈ 0.84, and
the system only needs to be sheared by an infinitesimal strain
to switch from one family to another.

B. Stress-dilatancy relation

The relationship between the stress anisotropy and dila-
tancy has been studied extensively for quasistatically sheared
packings of frictional spherical particles [22–25]. Here, we
focus on the stress-dilatancy relation for MS packings of
frictionless disks at jamming onset. As shown in Figs. 3(a)
and 3(b), we find that (1) |�̂xy | increases when φ increases
and decreases when φ decreases and (2) |�̂xy | ≈ 0 when
φ reaches a local minimum. Here, we derive relationships
between the components of the stress tensor (i.e., the shear
stress �̂xy and normal stress difference �̂N ) and the local
dilatancy [25–28], −dφ/φ, for MS packings generated via
protocols 1 and 2. Packings belonging to the same geometrical
family have identical contact networks and exist at jamming
onset with total potential energy per particle U ≈ 0. Thus, the
change in potential energy due to a change in shear strain dγ

and a decompression step that changes the area by dA along
a geometrical family is zero, or −PdA − �xyAdγ = 0 for
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simple shear and −PdA − �yyL
′
xdL′

y − �xxL
′
ydL′

x = 0 for
pure shear. Using dA/A = −dφ/φ, we find

�̂ = − 1

φ

dφ

dγ
, (2)

where �̂ = �̂xy for simple shear and �̂N for pure shear
deformations. Thus, the shear stress �̂xy (normal stress dif-
ference �̂N ) along a geometrical family is proportional to
the local dilatancy, −dφ/φ, during a simple (pure) shear
deformation step dγ . As we mentioned above, macroscopic
systems only need to be sheared by an infinitesimal strain
to switch from one geometric family to another. However,
the stress-dilatancy relation in Eq. (2) is still valid in the
large-system limit. Previous studies of frictional spherical par-
ticles undergoing continuous shear have found similar results,
where the stress is related to the dilatancy and macroscopic
friction angle [22,29].

For the case of applied simple shear strain, if we rotate
the stress tensor �βδ by 45◦, the directions of the compress-
sion and dilation deformations are aligned with the normal
directions of the stress tensor after rotation �′

βδ . The normal
stresses for �′

βδ can be calculated from the components of �βδ

as follows:

�′
xx = �xx + �yy

2
+ �xy, �′

yy = �xx + �yy

2
− �xy.

(3)

The scaled normal stress difference for the rotated stress
tensor �̂′

N is �̂xy . Thus, the stress anisotropies induced by
simple and pure shear are similar. From Eqs. (2) and (3),
we conclude that a MS packing with given contact network
will dilate (φJ will decrease) if the compressive (dilational)
deformation is applied along the direction with the larger
(smaller) normal stress.

In Figs. 4(a) and 4(b), we compare the results from the
calculations of the shear stress and normal stress difference
using the stress tensor [Eq. (1)] to those using Eq. (2) for
N = 6 MS packings generated using protocol 1 with a single
initial condition. We find strong agreement for this initial
condition as well as all others. In Figs. 4(c) and 4(d), we
further compare the two methods for calculating the stress
tensor components by plotting �̂xy or �̂N from the stress
tensor versus the right side of Eq. (2) for several system sizes
and protocols 1 and 2. The data collapse onto a line with unit
slope and zero vertical intercept. Data points that deviate from
the straight line collapse onto the line when dγ is decreased to
2 × 10−4. Thus, the proposed stress-dilatancy relation is valid
for all MS packings of frictionless particles at jamming onset.

C. Fabric tensor of MS packings at jamming onset

In this section, we describe the fabric anisotropy of the
contact networks for MS packings at jamming onset generated
via protocols 1 and 2. The fabric tensor is given by

Rβδ = 1

N ′
∑
i �=j

rijβrijδ

|r ij |2 , (4)

where rijβ is the β component of the center-to-center sep-
aration vector between particles i and j . Similar to the

FIG. 4. (a) Shear stress �̂xy versus simple shear strain γ and (b)
normal stress difference �̂N versus pure shear strain γ for N = 6
MS packings at jamming onset generated via isotropic compression
(protocol 1) using a single initial condition. Gray circles are data
points obtained from the components of the stress tensor and blue
dots are obtained by finding all of the geometrical families and
calculating �̂xy and �̂N from Eq. (2) along each family. Panels
(c) and (d) show plots of �̂xy and �̂N calculated using the stress
tensor versus the results from Eq. (2) for MS packings with N = 6
(circles), 10 (diamond), 16 (squares), and 32 (upward triangles).
Open (solid) symbols indicate MS packings generated via protocol 1
(protocol 2). The solid line has unit slope and zero vertical intercept.

definition of the stress anisotropy, we define the fabric
anisotropy as F̂ =

√
R̂2

N + R̂2
xy , which includes contributions

from the normal direction R̂N = (Ryy − Rxx )/(Rxx + Ryy )
and shear direction R̂xy = −2Rxy/(Rxx + Ryy ). In 2D, the
stress and fabric tensors have principal components, whose
directions are given by

tan 2�S = �̂xy

�̂N

, (5)

tan 2�F = R̂xy

R̂N

, (6)

where �S and �F are defined relative to the original x and
y axes [30]. We calculate 2�S and 2�F using a four quad-
rant arctangent function from the components of the stress
and fabric tensors, respectively, and plot the distributions in
Figs. 5(a) and 5(d). For MS packings generated via isotropic
compression, the principal directions of the stress and fabric
tensors are uniformly distributed in the 2D plane. In contrast,
for shear-jammed packings, 2�S and 2�F are preferentially
aligned along 90◦, indicating that the principal components of
the stress and fabric tensors are preferentially aligned with the
axes of the applied deformation (i.e., 45◦ and 135◦ for simple
shear).

The correlation between the angles of the principal com-
ponents of the stress and fabric tensors can be quantified
using the joint probability density function P (2�S, 2�F ).
As shown in Figs. 5(b) and 5(e), �S and �F are positively
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FIG. 5. (a) and (d) Distribution of 2�S (blue solid lines) and 2�F (red dotted lines) for MS packings at jamming onset with N = 128. �S

and �F are the angles that the principal components of the stress and fabric tensors make with the x and y axes. (b) and (e) Joint probability
density function of 2�S and 2�F for MS packings with N = 128. (c) and (f) Correlation between the xy component of the normalized stress
and frabric anisotropies, �̂xy and R̂xy , for N = 128 (blue), 256 (red), and 512 (yellow). The solid lines in (c) and (f) have slopes 0.30 and
0.43 and zero vertical intercepts. Panels (a)–(c) show MS packings generated via isotropic compression and panels (d)–(f) show shear-jammed
packings.

correlated for MS packings generated via both protocols 1 and
2. The correlation coefficients are c ∼ 0.42 for protocol 1 and
∼0.50 for protocol 2. No obvious system size dependence
in the correlations between �S and �F is observed as N

increases from 64 to 512.
In addition to �S and �F , we also investigate the distri-

bution of the normalized off-diagonal elements of the fabric
tensor, R̂xy , which quantifies the magnitude of the fabric
anisotropy. In Figs. 5(c) and 5(f), we plot R̂xy and �̂xy for
MS packings generated via protocols 1 and 2. The data is
scattered around lines with slope 0.30 for protocol 1 and 0.43
for protocol 2. As the system size N increases, the scatter in
the data narrows.

We can rotate the fabric tensor Rβδ by 45◦, so that the
principal components of the fabric tensor after rotation R′

βδ

are aligned with the directions of the compression and dilation
deformations. The components of R′

βδ will have the same
form as the stress components in Eq. (3). A packing will have
more (less) contacts in the direction with a larger (smaller)
diagonal component of the rotated fabric tensor. In Fig. 5(c),
we show that for packings with negative �̂xy (i.e., positive
dφ/dγ ), the off-diagonal component of the fabric tensor
R̂xy is more likely to be negative, which indicates that R′

yy

(component in the compression direction) after rotation is
smaller than R′

xx (component in the dilation direction). This
result suggests that packings with positive (negative) dφ/dγ

have a higher probability to possess more contacts in the
dilatancy (compression) direction.

As shown above, the principal components of the stress
and fabric tensors are uniformly distributed for packings
generated via isotropic compression and they are preferen-
tially aligned with the axes of the applied deformation for

shear-jammed packings. For both protocols, the directions of
the principal components and off-diagonal elements of the
stress and fabric tensor are strongly correlated. Therefore,
below we focus on the magnitude of the stress anisotropy
�̂xy . We measure the probability distribution and system size
dependence of �̂xy for packings generated via both protocols.

D. Distributions of the shear stress and normal stress
difference for protocols 1 and 2

In the inset of Fig. 6(a), we show the probability distribu-
tions for the shear stress and normal stress difference, P (�̂xy )
and P (�̂N ), for MS packings generated via isotropic com-
pression (protocol 1) and P (�̂N ) for MS packings generated
via protocol 2 with simple shear. When scaled by the standard
deviation S, these distributions collapse onto a Gaussian curve
centered at zero with unit standard deviation. As shown in
Fig. 6(b), the standard deviations for all three distributions
scale with system size as

S1(N ) = S0
1N−ω1 , (7)

where S0
1 ≈ 0.61 and ω1 ≈ 0.48. Thus, the stress tensor

is isotropic in the large-system limit for MS packings
generated via isotropic compression (protocol 1). In addition,
the normal stress difference is zero for MS packings generated
via protocol 2 with simple shear.

In the main panel of Fig. 6(a), we show the probability
distribution of the shear stress P (�̂xy ) for MS packings
generated via protocol 2 with simple shear. We note that
�̂xy > 0 and P (�̂xy ) is non-Gaussian for protocol 2. In
contrast to the behavior of the average shear stress 〈�̂xy〉 for
MS packings generated via isotropic compression (protocol
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FIG. 6. (a) The probability distributions of the shear stress
P (�̂xy ) for MS packings generated via protocol 2 with simple shear
for N = 32 (circles), 64 (squares), 128 (crosses), 256 (triangles), and
512 (diamonds). The solid lines are predictions from Eq. (17). In the
inset, we show three types of probability distributions scaled by their
standard deviations S: P (�̂xy ) (same symbols as main panel) and
P (�̂N ) (same symbols as main panel, but in red) for MS packings
generated via isotropic compression (protocol 1) and P (�̂N ) for
protocol 2 with simple shear (same symbols as main panel, but in
gray). The solid black line is a Gaussian distribution with zero mean
and unit standard deviation. (b) System-size dependence of 〈�̂xy〉
(circles) and standard deviations of P (�̂xy ) (triangles) and P (�̂N )
(squares) for MS packings generated via protocol 2 with simple
shear and the standard deviations of P (�̂xy ) (crosses) and P (�̂N )
(diamonds) for MS packings generated via protocol 1. The dashed,
solid, and dash-dotted lines are fits to Eqs. 7, 8, and 9, respectively.

1), 〈�̂xy〉 approaches a nonzero value in the large-system limit
for MS packings generated via protocol 2 with simple shear.
As shown in Fig. 6(b),

〈�̂xy〉(N ) = �̂0N
−� + �̂∞, (8)

where �̂0 ≈ 0.54, � ≈ 0.42, and �̂∞ ≈ 0.060. Simi-
larly, we find that the standard deviation of P (�̂xy )
for MS packings generated via protocol 2 with simple
shear approaches a nonzero value in the large-system
limit:

S2(N ) = S0
2N−ω2 + S∞, (9)

where S0
2 ≈ 0.28, ω2 ≈ 0.45, and S∞ ≈ 0.015. In contrast,

the width of the distribution of jammed packing fractions
tends to zero in the large-system limit [12]. Thus, the
packing-generation protocol strongly influences the stress
anisotropy, especially in the large-system limit. The expo-
nents ω1, �, and ω2 in Eqs. (7), (8), and (9) are all near
0.5, indicating mean-value statistics. The results for the

TABLE I. Means (〈·〉) and standard deviations (S) of the shear
stress �̂xy and normal stress difference �̂N distributions in the large-
system limit for protocols 1 and 2.

Protocol 〈�̂xy〉∞ 〈�̂N 〉∞ Sxy
∞ SN

∞

Protocol 1 0 0 0 0
Protocol 2
simple shear 0.060 0 0.015 0
Protocol 2
pure shear 0 0.055 0 0.016

average values and standard deviations of the distributions
P (�̂xy ) and P (�̂N ) in the large-system limit for protocols
1 and 2 (for simple and pure shear) are summarized in
Table I.

The stress anisotropy measured here is smaller than the
value obtained in other recent work (�̂xy ≈ 0.095) [31]. The
shear-jamming protocol in this prior work is very different
than the one presented here. We isotropically compress the
system to a packing fraction below jamming onset for each
particular initial condition, and then apply quasistatic shear at
fixed area until the system first jams at strain γJ . In contrast,
in these prior studies, the authors start with jammed packings
at a given pressure P > 0 and then apply quasistatic shear at
fixed P to a total strain γ = 10. Thus, the system can undergo
rearrangements and switch from one geometrical family to
another. We discuss the difference in the results for 〈�̂xy〉
for MS packings generated via shear jamming and continu-
ous quasistatic shear at fixed zero pressure in Appendix B.
Moreover, these prior studies only quoted the stress anisotropy
for a finite-sized system (N = 1024), and did not provide
an estimate for the stress anisotropy in the large-system
limit.

We will now describe a framework for determining the
distribution of shear stress P (�̂xy ) for MS packings generated
via protocol 2 with simple shear from the shear stress distribu-
tion obtained from protocol 1. We first make an approximation
in Eq. (2), �̂xy ≈ − 1

〈φ〉2

dφ

dγ
, where 〈φ〉2 is the average packing

fraction for MS packings generated using protocol 2. Now,
the goal is to calculate the distribution of the local dilatancy,
which hereafter we define as φ̇ ≡ − dφ

dγ
.

We first consider an infinitesimal segment of a geo-
metrical family (labeled i) that starts at (γi, φi ) and ends
at (γi + dγ, φi − dφ). We only need to consider segments
with negative slope, which implies that dγ > 0, dφ > 0,
and φ̇ > 0. The probability to obtain an MS packing on
segment i is proportional to (1) the volume of the ini-
tial conditions in configuration space that find segment
i [32,33], V1,i for protocol 1 and V2,i for protocol 2, and
(2) the region of parameter space over which the segment
is sampled, dγi for protocol 1 and dφi for protocol 2.
Thus, P1,i ∝ V1,idγi for protocol 1 and P2,i ∝ V2,idφi for
protocol 2.

The probability distribution for the local dilatancy φ̇ can be
written as

P1,2(φ̇) = V1,2(φ̇)∫ ∞
0 V1,2(φ̇)dφ̇

, (10)
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where V1,2(φ̇) is the sum of the basin volumes over all of the
infinitesimal segments with slope φ̇,

V1(φ̇) =
∑

i

V1,i (φ̇)dγi, (11a)

V2(φ̇) =
∑

i

V2,i (φ̇)dφi. (11b)

In the small-γ limit, γi ≈ 0, the basin volumes for each
segment i from protocols 1 and 2 satisfy V1,i ≈ V2,i . (In
Appendix C, we identify the shear strain at which this approx-
imation breaks down.) In this limit, the protocol dependence
of P (φ̇) is caused by the region of parameter space over which
the MS packings are sampled, dγi for protocol 1 versus dφi

for protocol 2. Thus, the distribution of local dilatancy for
protocol 2 for simple shear is given by

P2(φ̇) =
∑

i V2,idφi∫ ∞
0

∑
i V2,idφidφ̇

≈
∑

i V1,idγi φ̇∫ ∞
0

∑
i V1,idγi φ̇ dφ̇

(12a)

≈ P1(φ̇)φ̇

〈φ̇〉1
, (12b)

where we have used the relation dφi = dγiφ̇ and 〈φ̇〉1 is the
average of φ̇ for MS packings generated using protocol 1 with
φ̇ > 0.

In Fig. 7(a), we show that the local dilatancy distribution
P1(φ̇) for φ̇ > 0 from protocol 1 obeys a half-Gaussian distri-
bution,

P1(φ̇) =
√

2

S1
√

π
exp

(
− φ̇2

2S2
1

)
, (13)

with standard deviation S1. After we substitute P1(φ̇) given
by Eq. (13) and 〈φ̇〉1 = √

2/πS1 into Eq. (12), we find the
following expression for the local dilatancy distribution for
MS packings generated via protocol 2 with simple shear in
the small-γ limit:

P2(φ̇|γ  1) = k0

λ0

(
φ̇

λ0

)k0−1

exp

[
−

(
φ̇

λ0

)k0
]
. (14)

P2(φ̇|γ  1) = fw(φ̇; λ0, k0) is a Weibull distribution with
shape parameter k0 = 2 and scale parameter λ0 = √

2S1. We
show in Fig. 7(b) that the prediction in Eq. (14) agrees
quantitatively with the simulation results for γ < 2 × 10−4

over a range of system sizes.
We will now consider the local dilatancy distribution for

MS packings generated via protocol 2 at finite shear strains.
For protocol 1 (isotropic compression), our previous studies
have shown that the distribution of jammed packing fractions
is independent of the shear strain γ [9]. However, for protocol
2 (e.g., with simple shear), systems will preferentially jam on
geometrical families at small γ , effectively blocking families
at larger γ , which causes the fraction of unjammed packings
to decay exponentially with increasing γ for protocol 2 at a
given φ [9]. Therefore, as γ increases, the assumption that
V1,i ≈ V2,i is no longer valid, as shown in Appendix C. To
characterize the γ dependence of the local dilatancy distri-
bution, we partition the packings into regions of strain γ

required to jam them. We can then express the local dilatancy

FIG. 7. (a) Probability distribution of the local dilatancy P1(φ̇)
for φ̇ > 0 scaled by the standard deviation S1 for MS packings
generated via protocol 1 with N = 64 (squares), 128 (circles), 256
(triangles), and 512 (crosses). The solid line is the half-Gaussian
distribution in Eq. (13). (b) Probability distribution of the local
dilatancy P (φ̇) for MS packings generated via protocol 2 with simple
shear in the small strain limit (γ < 2 × 10−4). The symbols are the
same as in panel (a). The solid line is the Weibull distribution in
Eq. (14) with shape parameter k0 = 2 and scale parameter λ0 =√

2S1.

distribution for MS packings generated via protocol 2 with
simple shear as an integral over γ :

P2(φ̇) =
∫ ∞

0
P2(φ̇|γ )P2(γ )dγ, (15)

where P2(φ̇|γ ) is the conditional probability for obtaining φ̇

at a given γ and P2(γ ) is the probability for obtaining an
MS packing as a function of γ , which displays exponential
decay [9]: P2(γ ) = α exp(−αγ ). We show in Fig. 8(a) that
P2(φ̇|γ ) obeys a Weibull distribution, fw(φ̇; λ, k), with shape
k(γ ) and scale parameters λ(γ ) that depend on strain γ . k(γ )
and λ(γ ) decay exponentially to steady-state values in the
large-γ limit as shown in Fig. 8(b):

χ∞ − χ (γ )

χ∞ − χ0
= exp(−γ /γc ), (16)

where χ = k, λ and χ0 and χ∞ are the values when γ = 0 and
γ → ∞, respectively.

In the final step, we combine Eqs. (14) and (15) with the
results from Eq. (16) to predict the distribution of shear stress
for MS packings generated via protocol 2 with simple shear:

P2(�̂xy ) = 〈φ〉2

∫ ∞

0
fw(φ̇; λ(γ ), k(γ ))α exp (−αγ )dγ,

(17)
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FIG. 8. (a) The conditional probability P2(φ̇|γ ) for obtaining
local dilatancy φ̇ for MS packings with N = 128 generated via pro-
tocol 2 with simple shear for γ < 2 × 10−4 (circles), 0.012 < γ <

0.016 (triangles), 0.20 < γ < 0.22 (diamonds), 0.22 < γ < 0.24
(squares), and 0.24 < γ < 0.26 (crosses). The solid lines are Weibull
distributions fw (φ̇, λ(γ ), k(γ )). (b) The γ dependence of the shape
parameter χ = k (open symbols) and scale parameter χ = λ (solid
symbols) for fits of P2(φ̇|γ ) to Weibull distributions for N = 128
(circles), 256 (triangles), and 512 (diamonds). χ0 and χ∞ give the
values of k and λ at γ = 0 and in the γ → ∞ limit, respectively.
The solid lines are fits to an exponential decay, ∼ exp(−γ /γc ),
where γc = 0.027, 0.026, and 0.021 for N = 128, 256, and 512,
respectively.

where �̂xy = φ̇/〈φ〉2 has been used to relate P2(�̂xy ) to
P2(φ̇). The results from Eq. (17) agree quantitatively with
the distribution directly calculated from the stress tensor com-
ponents over a range of system sizes as shown in Fig. 6(a).
Thus, these results emphasize that we are able to calculate
the distribution of shear stress for MS packings generated via
protocol 2 from the well-known distribution of shear stress
for MS packings generated via protocol 1, plus only three
parameters: αγc, k∞, and λ∞. We will show below that 〈�̂xy〉
depends very weakly on k∞.

E. System-size dependence of the average stress
anisotropy for shear-jammed packings

In Fig. 6(b), we showed that the average shear stress
〈�̂xy〉 ∼ 0.06 reaches a nonzero value in the large-system
limit for MS packings generated via protocol 2 with simple
shear. In this section, we investigate the system size depen-
dence of 〈�̂xy〉 using the framework [Eq. (17)] for calculating
the shear stress distribution for MS packings generated via
protocol 2 using the shear stress distribution for MS packings
generated via isotropic compression (protocol 1).

FIG. 9. The system-size dependence of 〈�̂xy〉 ≈
(λ∞ + λ0αγc )/[〈φ〉2(αγc + 1)] (circles) from Eq. (21). The
best fit to Eq. (22) is given by the solid line. The shear stress in the
large-system limit 〈�̂xy〉∞ ≈ 0.060 is indicated by the dashed line.

〈�̂xy〉 for MS packings generated via protocol 2 can be
calculated from the probability distribution P2(�̂xy ):

〈�̂xy〉 =
∫ ∞

0
�̂xyP2(�̂xy )d�̂xy

≈
∫ ∞

0

φ̇

〈φ〉2
(〈φ〉2P2(φ̇))

dφ̇

〈φ〉2
= 1

〈φ〉2

∫ ∞

0
φ̇P2(φ̇)dφ̇.

(18)

After substituting Eq. (15) into Eq. (18), we have

〈�̂xy〉= 1

〈φ〉2

∫ ∞

0
φ̇

(∫ ∞

0
fw(φ̇; λ(γ ), k(γ ))αexp (−αγ )dγ

)
dφ̇

= 1

〈φ〉2

∫ ∞

0
〈φ̇〉γ α exp (−αγ )dγ, (19)

where 〈φ̇〉γ = λ(γ )�[1 + 1/k(γ )] is the average of φ̇ at strain
γ . The shape parameter k(0) = 2 and increases with γ , and
thus 0.886 � �[1 + 1/k(γ )] < 1. Therefore, 〈φ̇〉γ can be ap-
proximated as

〈φ̇〉γ ≈λ(γ )=λ∞[1 − exp(−γ /γc )] + λ0 exp(−γ /γc ).

(20)

After substituting Eq. (20) into Eq. (19), we find

〈�̂xy〉 ≈ λ∞ + λ0αγc

〈φ〉2(αγc + 1)
, (21)

which is plotted versus system size in Fig. 9. We fit the
system-size dependence to following form:

〈�̂xy〉(N ) = �̂0N
−� + �̂∞, (22)

where �̂0 ≈ 0.62, � ≈ 0.41, and �̂∞ ≈ 0.060, which are
similar to the values found directly using the data in Fig. 6.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we carried out computer simulations of fric-
tionless, purely repulsive disks to investigate the development
of stress anisotropy in MS packings prepared using two pro-
tocols. Protocol 1 involves shearing the system quasistatically
to a given strain at low packing fraction and then compressing
the system quasistatically to jamming onset at fixed strain.
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Protocol 2 involves compressing the system quasistatically at
γ = 0 to a packing fraction below jamming onset, and then
shearing the system quasistatically to achieve jamming onset.

We find several important results. We find that the stress
anisotropy distribution for MS packings generated via proto-
col 1 is a Gaussian with zero mean and a standard deviation
that scales to zero in the large-system limit. In contrast, MS
packings prepared using protocol 2 have a nonzero stress
anisotropy τ̂∞ ≈ 0.06 and standard deviation S∞ ≈ 0.015 in
the large-system limit. We also find correlations between the
stress and fabric tensors, which are stronger for shear-jammed
packings than for isotropically compressed packings. We de-
rive relationships between the components of the stress tensor
(shear stress and normal stress difference) and local dilatancy
dφ/dγ . Using these relations, we develop a statistical frame-
work to calculate the stress anisotropy distribution for shear-
jammed packings in terms of the well-known stress anisotropy
distribution for isotropically prepared packings. We show that
the stress anisotropy distribution for shear-jammed packings
can be described by a convolution of Weibull distributions
with shape and scale parameters that depend on strain. The
results for the stress anisotropy distribution from the sta-
tistical framework agree quantitatively with the direct mea-
surements of the stress tensor for MS packings generated
using protocol 2. These results emphasize that the packing-
generation protocol can dramatically influence the probabil-
ities with which MS packings occur, and thus change the
average macroscopic quantities that are measured for a given
protocol.

There are several interesting directions for future research
investigating the development of stress anisotropy in jammed
systems that can employ the techniques developed in the
present article. First, how does the presence of frictional
interparticle forces affect this picture? Recent computational
studies have shown that the shear modulus displays a dis-
continuous jump with increasing strain for static packings of
frictional spheres [34]. Can the discontinuity in the shear mod-
ulus be explained using the statistical framework for the shear
stress distribution that we developed here? Moreover, there
are still open questions about whether pure and simple shear
and isotropic compression can give rise to fundamentally
different ensembles of MS packings of frictional particles. For
example, consider the Cundall-Strack model for static friction
between contacting grains [35]. In this model, the tangential
force, which is proportional to the relative tangential dis-
placement between contacting grains can grow until the ratio
of the magnitude of the tangential to normal force reaches
the static friction coefficient μ. If the ratio exceeds μ, the
particle slips and the relative tangential displacement is reset.
Two packings with identical particle positions can possess
different numbers of near-slipping contacts. It is thus possible
that different packing-generation protocols will lead to nearly
identical MS packings with different numbers of near-slipping
contacts, which would give rise to different values for the
stress anisotropy. The presence of interparticle adhesion also
strongly affects the structural and mechanical properties of
MS packings [36–38]. For example, extremely loose packings
can form with strong interparticle adhesion [10]. An interest-
ing future direction will involve understanding shear jamming
of adhesive loose packings.

FIG. 10. (a) The probability distribution P (�̂N ) of the normal
stress difference for MS packings generated via protocol 2 with pure
shear for N = 32 (circles), 64 (squares), 128 (crosses), and 256
(triangles). The solid lines are predictions from Eq. (17). The inset
shows the distributions for �̂N (same symbols as in main panel) and
�̂xy (same symbols as in main panel, but in red) for MS packings
generated via protocol 1, and �̂xy for MS packings generated via
protocol 2 using pure shear (same symbols as in main panel, but in
gray). The solid black line is a Gaussian distribution with a zero mean
and unit standard deviation. (b) System-size dependence of (1) the
average (circles) and standard deviation (triangles) of P (�̂N ) for MS
packings generated via protocol 2 with pure shear, (2) standard de-
viation of P (�̂xy ) (squares) for MS packings generated via protocol
2 with pure shear, and (3) standard deviations of P (�̂N ) (crosses)
and P (�̂xy ) (diamonds) for MS packings generated via protocol 1.
The dashed, solid, and dash-dotted lines are fits to Eqs. (7), (A1),
and (A2), respectively.

Second, how does nonspherical particle shape affect the
geometrical families φ(γ )? In preliminary studies, we have
shown that the geometrical families for MS packings of
circulo-polygons at jamming onset occur as parabolic seg-
ments that are both concave up and concave down (see
Appendix D). In future studies, we will generate packings of
circulo-polygons using protocol 2 to connect the statistics of
the geometrical families φ(γ ) to the development of nonzero
stress anisotropy in the large-system limit for MS packings of
nonspherical particles.
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APPENDIX A: NORMAL STRESS DIFFERENCE
�̂N FOR MS PACKINGS GENERATED VIA

PROTOCOL 2 WITH PURE SHEAR

In Fig. 6, we presented the probability distributions for the
shear stress �̂xy and normal stress difference �̂N for MS disk
packings generated via protocols 1 and 2 with simple shear. In
this Appendix, we show the results for the probability distri-
butions P (�̂xy ) and P (�̂N ) for MS disk packings generated
via protocol 2 with pure shear.

Pure shear strain couples to the normal stress difference,
not to the shear stress. Thus, as shown in Fig. 10(a), the
probability distributions P (�̂N ) for MS packings generated
via protocol 2 with pure shear are qualitatively the same as
P (�̂xy ) for MS packings generated via protocol 2 with simple
shear. The predictions from the statistical model in Eq. (17)
again agree quantitatively with the distribution directly cal-
culated from the stress tensor components. The probability
distributions P (�̂N ) and P (�̂xy ) for MS packings generated
via protocol 1 and P (�̂xy ) for MS packings generated via
protocol 2 (with pure shear) are Gaussian with zero mean and

standard deviations that scale to zero with increasing system
size [see Eq. (7)].

The average of P (�̂N ) for MS packings generated via
protocol 2 with pure shear decreases as N increases, but
reaches a nonzero value in the large-system limit:

〈�̂N 〉(N ) = �̂0N
−� + �̂∞, (A1)

where �̂0 ≈ 0.49, � ≈ 0.40, and �̂∞ ≈ 0.055. Similarly, the
standard deviation of P (�̂N ) also reaches a nonzero value in
the large-system limit:

S2(N ) = S0
2N−ω2 + S∞, (A2)

where S0
2 ≈ 0.30, ω2 ≈ 0.50, and S∞ ≈ 0.016. The results for

MS packings generated via protocol 2 with pure shear are
analogous to those observed for MS packings generated via
protocol 2 with simple shear (see Table I).

MS packings generated via protocol 2 for pure shear obey
the same stress-dilatancy relationship [Eq. (2)] as that for sim-
ple shear. Thus, we can apply the statistical model in Sec. III D
to predict the stress anisotropy distribution for MS packings
generated via pure shear. As shown in Figs. 11(a) and 11(b),
the distribution for the local dilatancy of shear-jammed pack-
ings at small γ limit obeys a Weibull distribution, which
can be predicted from the half-Gaussian distribution for MS
packings obtained via protocol 1 [see Eqs. (13) and (14)]. The
conditional probability, P2(φ̇|γ ), for obtaining φ̇ at a given
γ is shown in Fig. 11(c) and fit to a Weibull distribution
fw(φ̇; γ, k). In Fig. 11(d), we plot the γ dependence of the
shape k(γ ) and scale λ(γ ) parameters. Both parameters decay

FIG. 11. (a) Probability distribution of the dilatancy P1(φ̇) for φ̇ > 0 scaled by the standard deviation S1 for MS packings generated
via protocol 1 and pure shear with N = 64 (squares), 128 (circles), 256 (triangles), and 512 (crosses). The solid line is the half-Gaussian
distribution in Eq. (13). (b) Probability distribution of the dilatancy P (φ̇) for MS packings generated via protocol 2 with pure shear in the
small strain limit (γ < 2 × 10−4). The symbols are the same as in panel (a). The solid line is the Weibull distribution in Eq. (14) with shape
parameter k0 = 2 and scale parameter λ0 = √

2S1. (c) The conditional probability P2(φ̇|γ ) for obtaining dilatancy φ̇ for MS packings with
N = 128 generated via protocol 2 with pure shear for γ < 2 × 10−4 (circles), 0.010 < γ < 0.0105 (triangles), 0.18 < γ < 0.20 (diamonds),
0.20 < γ < 0.22 (squares), and 0.24 < γ < 0.26 (crosses). The solid lines are Weibull distributions fw (φ̇, λ(γ ), k(γ )). (d) The γ dependence
of the shape parameter χ = k (open symbols) and scale parameter χ = λ (solid symbols) for fits of P2(φ̇|γ ) to Weibull distributions for
N = 128 (circles) and 512 (diamonds). χ0 and χ∞ give the values of k and λ at γ = 0 and in the γ → ∞ limit, respectively. The solid lines
are fits to an exponential decay, ∼ exp(−γ /γc ), where γc = 0.029 and 0.021 for N = 128 and 512, respectively.
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exponentially to steady-state values in the large-γ limit [see
Eq. (16)]. These results are similar to those for the simple
shear case described in the main text.

APPENDIX B: COMPARISION BETWEEN
SHEAR-JAMMED PACKINGS AND PACKINGS

GENERATED VIA QUASISTATIC SIMPLE SHEAR AT
ZERO PRESSURE

In this Appendix, we compare the properties of shear-
jammed packings to MS packings generated via continuous
quasistatic simple shear at near zero pressure [26,31]. To
realize continuous quasistatic simple shear, we first compress
the system to jamming onset at zero simple shear strain.
The pressure of the packings obeys P0 < P < 1.01P0, with
P0 = 10−7. We then successively apply simple shear strain
in steps dγ = 10−4 to the packings, followed by energy
minimization. Before applying the next simple shear strain
step, we compress or expand the system to meet the pressure
criterion.

In Fig. 12(a), we show the stress anisotropy �̂xy (γ ) for MS
packings generated via protocol 2 and continuous quasistatic
simple shear at near zero pressure, starting from the same
initial configuration at γ = 0. Key differences in �̂xy (γ ) can
be observed. For example, �̂xy is strictly positive for shear-
jammed packings. In contrast, continuously sheared packings
can possess �̂xy > 0 and �̂xy < 0. This result suggests that
during continuous simple shear as the jammed packing moves
along a given geometric family or during a rearrangement,

FIG. 12. (a) Stress anisotropy for shear-jammed packings (pro-
tocol 2) (circles) and packings generated via quasistatic simple shear
at zero pressure (squares) starting from the same initial configuration
at γ = 0. The system size is N = 64. (b) Probability distributions
of the stress anisotropy P (�̂xy ) for shear-jammed packings (circles)
and packings generated via quasistatic simple shear (squares) with
N = 64. The red dashed line is a guide to the eye and the blue solid
line is a Gaussian distribution. The distribution of stress anisotropy
for MS packings generated via quasistatic simple shear is obtained
in steady state.

the system can reach a region of a parabolic segment with
dφ/dγ > 0. In Fig. 12(b), we compare the probability dis-
tribution of stress anisotropy �̂xy for packings generated
via protocol 2 and continuous shear at near zero pressure.
For continuously sheared MS packings in steady state, the
stress anisotropy obeys a Gaussian distribution that is shifted
toward γ > 0. In contrast, the stress anisotropy distribution
is a convolution of strain-dependent Weibull distributions for
shear-jammed packings.

APPENDIX C: PROTOCOL DEPENDENCE OF THE
VOLUME OF THE BASIN OF ATTRACTION

FOR MS PACKINGS

In the description of the statistical framework (Sec. III D)
for calculating the distribution of dilatancy for MS packings
generated via protocol 2 with simple shear from those gen-
erated via protocol 1, we first assumed that the volumes of
the basins of attraction were the same (i.e., V1,i ≈ V2,i) for
protocols 1 and 2. In this Appendix, we illustrate that this
assumption breaks down for sufficiently large simple shear
strains.

We illustrate the basin volume for an N = 6 MS packing,
which is a four-dimensional quantity, by projecting it into two
dimensions. We consider a particular N = 6 MS packing at
shear strain γ and packing fraction φ that can be generated
readily via protocol 1 and protocol 2 with simple shear. We

FIG. 13. Two-dimensional projection of the four-dimensional
basin of attraction for a particular N = 6 MS packing generated
using (a) protocol 1 and (b) protocol 2 (with simple shear) at shear
strain γ = 2 × 10−3. The x and y coordinates indicate the initial
position of particle 1, while the initial conditions for particles 2
through 6 are fixed to specific locations within the simulation cell. If
a pixel is blue, the initial position maps to the target MS packing after
the packing-generation procedure. Panels (c) and (d) are comparable
to (a) and (b) except the shear strain has been increased to γ = 0.02.
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FIG. 14. (a) An MS packing of N = 6 of bidisperse circulo-
triangles with asphericity parameter A = 1.1. (b) Packing fraction
φ at jamming onset as a function of simple shear strain γ for
N = 6 MS packings of circulo-triangles generated via protocol 1.
The packing in panel (a) corresponds to the filled red triangle. The
solid lines are fits of two particular parabolic regions (shaded gray)
to φ(γ ) = A(γ − γ0)2 + φ0. (c) (φ − φ0 )/|A| versus γ − γ0, for
N = 6 MS packings of circulo-triangles generated via protocol 2
with simple shear. These packings populate the parabolic regions
with dφ/dγ < 0 on segments with both A > 0 and A < 0. The
jammed and unjammed regions of the (φ − φ0)/|A| and γ − γ0 plane
are indicated.

identify a point (r1, r2, . . . , r6) within the basin of attraction
of the MS packing and constrain the positions of particles 2

through 6. The initial position of particle 1 is allowed to vary
in the x-y plane. The pixels in each panel of Fig. 13 represent
the initial positions of particle 1 and they are colored blue
if the initial configuration at (x, y) maps to the position of
particle 1 in the particular MS packing that we selected. The
area of the blue region gives the projected area of the basin of
attraction for that particular MS packing.

In Figs. 13(a) and 13(b), we show the basins of attraction
for a particular MS packing at a small shear strain, γ = 2 ×
10−3, for protocols 1 and 2, respectively. The areas of the blue
regions are nearly the same, which suggests that V1,i ≈ V2,i .
However, at larger shear strains, the basin volumes for the
two protocols deviate. For example, in Figs. 13(c) and 13(d)
at shear strain γ = 0.02, the projected area for protocol 1
is much larger than that for protocol 2, which implies that
V1,i �= V2,i .

APPENDIX D: SIMPLE SHEAR OF
CIRCULO-TRIANGLE PACKINGS

In this Appendix, we show that MS packings of nonspheri-
cal particles, specifically circulo-triangles, also form geomet-
rical families in the packing fraction φ and shear strain γ

plane. We considered bidisperse mixtures of circulo-triangles,
half large and half small with area ratio ra = 1.42 and interior
angles of 33◦, 62◦, and 85◦ for each triangle. We fixed the
asphericity parameter A = p2/4πa = 1.1, where p and a are
the perimeter and area of the circulo-triangles, respectively.
At this asphericity, the packings can be either isostatic or
hypostatic [17]. A typical configuration is shown in Fig. 14(a).

As is the case for circular disks, we find that the geomet-
rical families for MS packings of circulo-triangles generated
via protocol 1 with simple shear form parabolic segments
in the φ-γ plane, satisfying φ(γ ) = A(γ − γ0)2 + φ0 [as
shown in Fig. 14(b)]. However, we find that the curvature
of the parabolas can be both concave up and concave down
(A > 0 and A < 0) for MS packings of circulo-triangles. In
contrast, A > 0 for MS disk packings. A < 0 implies strain-
induced compaction, which may be caused by the alignment
of the circulo-triangles during shear. Preliminary results indi-
cate that the stress anisotropy for shear-jammed packings of
circulo-triangles is finite (and larger than that for frictionless
disks) in the large-system limit.
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