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We perform computational studies of static packings of a variety of nonspherical particles including circulo-
lines, circulo-polygons, ellipses, asymmetric dimers, dumbbells, and others to determine which shapes form
packings with fewer contacts than degrees of freedom (hypostatic packings) and which have equal numbers of
contacts and degrees of freedom (isostatic packings), and to understand why hypostatic packings of nonspherical
particles can be mechanically stable despite having fewer contacts than that predicted from naive constraint
counting. To generate highly accurate force- and torque-balanced packings of circulo-lines and cir-polygons,
we developed an interparticle potential that gives continuous forces and torques as a function of the particle
coordinates. We show that the packing fraction and coordination number at jamming onset obey a masterlike
form for all of the nonspherical particle packings we studied when plotted versus the particle asphericity A, which
is proportional to the ratio of the squared perimeter to the area of the particle. Further, the eigenvalue spectra of
the dynamical matrix for packings of different particle shapes collapse when plotted at the same A. For hypostatic
packings of nonspherical particles, we verify that the number of “quartic” modes along which the potential energy
increases as the fourth power of the perturbation amplitude matches the number of missing contacts relative to
the isostatic value. We show that the fourth derivatives of the total potential energy in the directions of the quartic
modes remain nonzero as the pressure of the packings is decreased to zero. In addition, we calculate the principal
curvatures of the inequality constraints for each contact in circulo-line packings and identify specific types of
contacts with inequality constraints that possess convex curvature. These contacts can constrain multiple degrees
of freedom and allow hypostatic packings of nonspherical particles to be mechanically stable.
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I. INTRODUCTION

There have been a significant number of computational
studies aimed at elucidating the jamming transition in static
packings of frictionless spherical particles [1–3]. Key findings
from these studies include (i) sphere packings at jamming
onset at packing fraction φJ are isostatic (where the number
of contacts matches the number of degrees of freedom, as
shown in Fig. 1), (ii) the coordination number, shear modulus,
and other structural and mechanical quantities display power-
law scaling as a function of the system’s pressure P as
packings are compressed above jamming onset at P = 0, and
(iii) the density of vibrational modes develops a plateau at
low frequencies ω that extends toward ω → 0 as the system
approaches jamming onset. Many of these results are robust
with respect to changes in the particle size polydispersity and
different forms for the purely repulsive interparticle potential.

Most studies of jamming to date have been performed
on packings of disks in two dimensions (2D) or spheres in
three dimensions (3D). More recently, both computational
and experimental studies have begun focusing on packings
of nonspherical shapes, such as ellipsoids [4–11], sphero-
cylinders [12–17], polyhedra [18,19], and composite parti-
cles [20–23]. In particular, there is a well-established set of

results on packings of frictionless ellipses (or ellipsoids in 3D).
In general, static packings of frictionless ellipses are hypostatic
with fewer contacts than the number of degrees of freedom
using naive contact counting. For amorphous mechanically
stable (MS) packings of disks, the coordination number in the
large-system limit is z = 2df (where df = 2 is the number of
degrees of freedom per particle) [24]. Thus, one might expect
that the coordination number for ellipses in 2D would jump
from z = 4 to 6 (with df = 3) for any aspect ratio α > 1.
However, z(α) increases continuously from 4 at α = 1 and
remains less than 6 for all α. We have shown that the number
of missing contacts exactly matches the number of “quartic”
eigenmodes from the dynamical matrix for which the potential
energy increases as the fourth power of the displacement for
perturbations along the corresponding eigenmode [6]. In addi-
tion, the packing fraction at jamming onset φJ (α) possesses a
peak near α ≈ 1.5, and then decreases for increasing α.

Are these results for ellipses similar to those for all other
nonspherical or elongated particle shapes? Prior results for
packings of sphero-cylinders have shown that they are hypo-
static [16]. However, packings of composite particles formed
from collections of disks (2D) [20,25] or spheres (3D) [21]
are isostatic at jamming onset. Unfortunately, very few studies
explicitly check whether hypostatic packings are mechanically
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FIG. 1. An isostatic packing of N = 18 bidisperse disks (9 large
and 9 small with diameter ratio r = 1.4) in a square box with periodic
boundary conditions at jamming onset φJ = 0.835. Blue disks form
the force-bearing backbone, and red disks are “rattler” disks that
possess fewer than three contacts. This isostatic packing possesses
Nc = N 0

c = 2(N − Nr ) − 1 = 31 contacts (indicated by black solid
lines), where N0

c is the isostatic number of contacts.

stable. The goal of this article is to determine which particle
shapes can form mechanically stable (i.e., jammed), hypostatic
packings, identify a key shape parameter that controls the forms
of the coordination number z and packing fraction φJ , and gain
a fundamental understanding for why hypostatic packings are
mechanically stable, even at jamming onset P = 0.

To address these questions, we generate static packings
using a compression and decompression scheme coupled
with energy minimization for nine different particle shapes
(ellipses, circulo-lines, circulo-triangles, circulo-pentagons,
circulo-octagons, circulo-decagons [26], dimers [20], dumb-
bells [27], and Reuleaux triangles [28]) in 2D. These particle
shapes can all be classified as strictly convex or “effectively
convex,” meaning that the accessible contact surface for each
particle is nowhere locally concave. In this paper, we restrict
our studies to strictly convex or effectively convex particle
shapes. To study such a wide range of particle shapes, we
developed a fully continuous and differentiable interparticle
potential for circulo-lines and circulo-polygons, which allows
us to generate packings with extremely accurate force and
torque balance at very low pressure [29–33]. We find several
important results. First, we show that the jammed packing
fraction for the particle shapes that yield hypostatic packings
collapses onto a masterlike curve when plotted versus the
asphericity parameter A = p2/4πa, where p is the perimeter
and a is the area of the particle. We also show that the
coordination number z(A) follows a masterlike curve when
contacts between nearly parallel circulo-lines or nearly parallel
sides of circulo-polygons are treated properly. In addition, for
packings of circulo-lines, we calculate the fourth derivatives
of the total potential energy along the quartic modes of the
dynamical matrix [6] and show that the fourth derivatives are
nonzero as P → 0, which proves that these hypostatic pack-
ings are mechanically stable. Finally, we calculate the principal
curvatures of the constraint surfaces in configuration space

TABLE I. A list of the nine strictly or effectively convex, non-
spherical particle shapes studied in this article, along with the ranges
of aspect ratio α and asphericity A that we considered.

Particle shape α − 1 A − 1

Circulo-line 10−3–4 4.05 × 10−7–1.06
Circulo-triangle 10−6.5–0.4
Circulo-pentagon 10−6.5–0.4
Circulo-octagon 10−6.5–0.4
Circulo-decagon 10−6.5–0.1
Dimer 0.571 0.349
Dumbbell 2–4 0.514–2.405
Reuleaux triangle 0.114
Ellipse 10−4–0.9 3.75 × 10−9–0.161

defined by each contact to identify which types of contacts in
packings of circulo-lines allow them to be mechanically stable,
while hypostatic.

This article is organized as follows. In Sec. II, we describe
the compression and decompression plus minimization method
we use to generate static packings of convex or effectively
convex, nonspherical particles. In Sec. III A, we present ex-
amples of static packings of several different strictly and
effectively convex, nonspherical particle shapes to put forward
a conjecture concerning which nonspherical particle shapes
form hypostatic packings and which always form isostatic
packings. In Sec. III B, we show that the packing fraction
φ(A) and coordination number z(A) at jamming onset display
masterlike forms when plotted versus the particle asphericity
A, for the nonspherical particle shapes that yield hypostatic
packings. In this section, we also show results for the calcula-
tions of the fourth derivatives of the total potential of the static
packings in the directions of dynamical matrix eigenmodes.
Finally, in Sec. III C, we calculate and analyze the principal
curvatures of the constraint surfaces given by the interparticle
contacts to understand the grain-scale mechanisms that enable
hypostatic packings to be mechanically stable. We also include
three appendices. Appendix A describes the development of a
continuous and differentiable interparticle repulsive potential
between circulo-lines and circulo-polygons, which allows us
to generate extremely accurate force- and torque-balanced
jammed packings near zero pressure. Appendix B describes
how we generate different circulo-polygon shapes at constant
asphericity A. Finally, in Appendix C, we provide expressions
for the elements of the dynamical matrix for packings of
circulo-polygons.

II. METHODS

Using computer simulations, we generate static packings
of frictionless, nonspherical, convex or effectively convex
particles in 2D. The particles are nearly hard in the sense
that we consider mechanically stable packings in the zero-
pressure limit. We study nine different particle shapes: circulo-
lines, circulo-triangles, circulo-pentagons, circulo-octagons,
circulo-decagons, Reuleaux triangles, ellipses, dumbbells, and
dimers. (See Table I.) We focus on bidisperse mixtures in which
half of the particles are large and half are small to prevent
crystallization [1,34]. The large particles have areas that satisfy
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aL = 1.42aS , where aL,S are the areas of the large and small
particles, respectively. Both particles have the same mass m.
We generated static packings at fixed asphericityA for the large
and small particles over a wide range ofA. We employ periodic
boundary conditions in square domains with edge length L = 1
and system sizes that vary from N = 24 to 480 particles. Note
that the term “effectively convex particle shapes” stands for
“shapes whose accessible contact surface is nowhere locally
concave.” Our studies include dimers (which possess two
points on the surface that are concave), circulo-lines (which
contain regions of zero curvature), ellipses, and other explicitly
convex particles.

We assume that particles i and j interact via the purely
repulsive, pairwise linear spring potential,

U (rij ) = k

2
(σij − rij )2�(σij − rij ), (1)

where k is the spring constant of the interaction and �(x) is
the Heaviside step function. Below, lengths, energies, and pres-
sures will be expressed in units of L, kL2, and k, respectively.
For disks, rij is the separation between the centers of disks i

and j , and σij = Ri + Rj is the sum of the radii of disks i

and j .
For dimers, i.e., composite particles formed from two cir-

cular monomers, rij is the center-to-center separation between
each pair of interacting monomers, and σij is the sum of the
radii of those monomers. A Reuleaux triangle is a shape that
is constructed by joining three circular arcs of equal radius
such that their intersection points (vertices of the Reuleaux
triangle) are the centers of each circle. For this shape, we first
identify whether two arcs are overlapping or whether a vertex is
overlapping an arc. We then set rij in Eq. (1) to be the distance
between the center points of the overlapping arcs (in the case of
two overlapping arcs) or the distance between the center point
of the arc and the vertex (in the case of a vertex overlapping an
arc). We set σij to be the sum of the radii of the two overlapping
arcs, or the radius of the single arc when a vertex is overlapping
an arc. (See Fig. 2.)

For ellipses, we take rij to be the distance between the
centers of the particles, and σij to be the center-center dis-
tance that would bring the particles exactly into contact at
their current orientations [6]. For dumbbell-shaped particles,
we have multiple possible cases for rij , depending on their
orientations. We calculate rij either as the distance between
each pair of circular ends, or between each circular end and

FIG. 2. Definition of the separation rij between two Reuleaux
triangles when (a) the two circular arcs are overlapping and (b) a
vertex is overlapping one of the circular arcs. In case (a), rij is the
distance between the vertices at the centers of the corresponding arcs.
In case (b), rij is the distance between the arc’s central vertex and the
vertex overlapping the arc.

the other particle’s shaft, with σij chosen to be the sum
of the relevant radii in each case. The repulsive contact
interactions between circulo-lines and circulo-polygons are
calculated in a similar fashion to dumbbells. However, because
the regions of changing curvature in the case of circulo-lines
and circulo-polygons are accessible, unlike in the dumbbell
case, additional constraints in the potential are necessary to
prevent discontinuities in the pairwise torques and forces.
For a thorough explanation of how we define a continuous
and differentiable repulsive linear spring potential between
circulo-lines and circulo-polygons, see Appendix A).

In this article, our method for generating jammed packings
of nonspherical particles employs conjugate gradient energy
minimization, which we have used extensively for studying
disordered, jammed disk packings [35]. These methods are
similar to “rapid” energy minimization to zero temperature,
which can be achieved using steepest descent, where particle
forces are proportional to velocities. More generally, we can
use molecular dynamics (MD) simulation methods to generate
jammed packings of spherical and nonspherical particles. With
MD, we can employ a range of damping parameters, even small
values, where the energy is drained from the system slowly.
However, we use conjugate gradient (CG) energy minimization
in the present studies since CG is analogous to a “fast” thermal
quench and yields exclusively disordered packings.

To generate static packings, we successively compress and
decompress the system with each compression or decom-
pression step followed by the conjugate gradient method to
minimize the total potential energy U = ∑

i>j U (rij ). We use
a binary search algorithm to push the system to a target pressure
P = P0. If P > P0, the system is decompressed isotropi-
cally, and if P < P0, the system is compressed isotropically.
Subsequently, we perform minimization of the enthalpy [36]
H = U + P0A, where A is the area of the system, the pressure
P = −dU/dA, and P0 = 10−9 is the target pressure, with the
particle positions and the box edge length as the degrees of
freedom. Using this algorithm, we achieve accurate force and
torque balance such that the squared forces f 2

i and torques τ 2
i

on a given particle i do not exceed 10−25.
After generating each static packing, we calculate its dy-

namical matrix M , which is the Hessian matrix of second
derivatives of the total potential energy U with respect to the
particle coordinates:

Mij = ∂2U

∂ξi∂ξj

, (2)

where ξi = xi , yi , and θi , xi and yi are the coordinates of the
geometric center of particle i, and θi characterizes the rotation
angle of particle i. We then calculate the 3N eigenvalues λi

of M , and the corresponding eigenvectors �λi with �λ2
i = 1.

For more details on the calculation of the dynamical matrix
elements, see Appendix C.

III. RESULTS

Our results are organized into three subsections. In
Sec. III A, we discuss which nonspherical particle shapes
give rise to hypostatic packings, and then propose specific
criteria that nonspherical particle shapes must satisfy to yield
hypostatic packings. In Sec. III B, we show the variation of
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the packing fraction φ and coordination number z at jamming
onset with particle asphericity A for packings of circulo-
lines, circulo-polygons, and ellipses. Finally, in Sec. III C, we
calculate the principal curvatures of the inequality constraints
in configuration space arising from interparticle contacts for
hypostatic packings of circulo-lines to identify the specific
types of contacts that allow static packings to be hypostatic,
yet mechanically stable.

A. Nonspherical particle shapes that give rise to
hypostatic packings

In this section, we discuss results for the contact number
of static packings containing a variety of nonspherical particle
shapes. Based on these results, we propose that strictly and
effectively convex frictionless particles will form hypostatic
packings if both of the following two criteria are satisfied: (i)
the particle has one or more nontrivial rotational degrees of
freedom, and (ii) the accessible (nonexcluded) contact area
cannot be achieved by a union of a finite number of disks.
Below, we show several examples of systems that satisfy and
do not satisfy these criteria.

First, disks do not satisfy (i) or (ii), and hence our conjecture
predicts that disks will form isostatic, not hypostatic, packings.
Next, we consider packings of circulo-lines that are prevented
from rotating, and thus the particle’s orientation remains
the same over the course of the packing simulations. [See
Fig. 3(a).] These particles obey criterion (ii), as a circulo-
line can only be achieved by a union of an infinite number
of disks, but fail to meet criterion (i). Hence, the above
conjecture predicts that these particles will form isostatic, not
hypostatic, packings. We also generated packings of bidisperse
asymmetric dimers [Fig. 3(b)]. These particles meet criterion
(i) since we allow them to rotate, but fail to meet criterion (ii)
since dimers are made up of a union of two disks. Thus, our
conjecture predicts that these particles will form isostatic, not
hypostatic, packings, as shown in Fig. 3(b).

Finally, we generated packings of rotating circulo-lines, as
well as Reuleaux triangles, examples of which are pictured
in Figs. 3(c) and 3(d), respectively. Both particles meet crite-
rion (i) since they are allowed to rotate. Circulo-lines meet
criterion (ii) as stated earlier. Reuleaux triangles also meet
criterion (ii). Despite being comprised of a finite number
of circular arcs, it is impossible to represent them as a finite
number of complete disks. Therefore, since both particle
shapes meet both criteria, our conjecture predicts that they
will form hypostatic, not isostatic, packings. Ellipses also meet
criteria (i) and (ii) and form hypostatic packings [6].

The importance of specifying “accessible (nonexcluded)
contact area” in criterion (ii) can be demonstrated by the two
packings of dumbbells in Fig. 4. In both cases, the particles are
allowed to rotate, so criterion (i) is satisfied. The packing in
Fig. 4(a) also satisfies criterion (ii) because the shaft is part of
the accessible contact surface of the constituent particles, and
the shaft cannot be expressed as a finite union of disks. Thus,
we expect hypostatic packings for the dumbbells in Fig. 4(a).
In contrast, in Fig. 4(b), the shaft is not part of the accessible
contact surface because it is too short to allow the end disks of
other particles to come into contact with it. Thus, the particles
in Fig. 4(b) do not satisfy criterion (ii) because the accessible

FIG. 3. Two isostatic [(a) and (b)] and two hypostatic packings
[(c) and (d)] of nonspherical particles. (a) This packing with φ =
0.782 consists of 10 nonrotating circulo-lines with asphericity A =
1.06. The red particle is a rattler with two unconstrained degrees of
freedom, and the yellow particle is a slider with one unconstrained
degree of freedom. The blue and yellow particles form an isostatic
contact network with Nc = 2N − 4 = 16 contacts, where we have
subtracted off three additional contacts due to the rattler and slider
particles. (b) This packing with φ = 0.828 consists of 10 asymmetric
dimers. The two monomers on a given dimer have a diameter ratio
r = 1.4 and the ratio of the lengths of large and small dimer axes isd =
1.4. The three yellow “rotator” particles each have one unconstrained
rotational degree of freedom. The particles form an isostatic contact
network with Nc = 3N − 4 = 26, where we have subtracted off three
additional contacts due to the rotator particles. (c) This packing with
φ = 0.892 consists of 18 rotating circulo-lines with asphericity A =
1.06. The yellow particle is a slider with one unconstrained degree of
freedom. If the particles formed an isostatic contact network, it would
possess Nc = 3N − 2 = 52 contacts. However, we find Nc = 46. (d)
This packing with φ = 0.874 consists of 18 Reuleaux triangles. If the
system were isostatic, Nc = 3N − 1 = 53, however, we find Nc =
43.

contact surface can be achieved by a union of two disks. We
expect packings generated using the dumbbells in Fig. 4(b) to
be isostatic.

B. Packing fraction, coordination number, and eigenvalues
of the dynamical matrix

In this section, we describe studies of the packing fraction
and coordination number of packings of nonspherical particles
at jamming onset as a function of the particle asphericity
A. Note that for each particle type, other than Reuleaux
triangles, studied in this section (namely, circulo-lines, el-
lipses, circulo-triangles, circulo-pentagons, circulo-octagons,
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FIG. 4. (a) A hypostatic and (b) an isostatic packing of 18
dumbbells, with packing fractions φ = 0.769 and 0.806, respectively.
In (a) and (b), the shaft half-width is equal to half of the radius of the
end disks. In (a) the length of the shaft is 4 times the disk radius,
whereas in (b), the shaft length is 2.4 times the disk radius. In (a), the
yellow particle has one unconstrained degree of freedom. Thus, if the
particles formed an isostatic contact network, Nc = 3N − 2 = 52.
The packing is hypostatic with Nc = 51. In (b), the packing has
no particles with unconstrained degrees of freedom. This packing
is isostatic with Nc = 3N − 1 = 53.

and circulo-decagons), we are considering a family of shapes
of that type, whose asphericity can be varied continuously.
We also calculate the eigenvalues of the dynamical matrix for
packings of circulo-lines and circulo-polygons and show the
eigenvalue spectrum as a function of decreasing pressure. We
find that hypostatic packings possess a band of eigenvalues,
i.e., the “quartic modes,” for which the energy increases as the
fourth power in amplitude when we perturb the system along
their eigendirections. These quartic modes are not observed in
isostatic packings. We further show that the fourth derivative
of the total potential energy in the direction of these quartic
modes does not vanish at zero pressure, proving that packings
possessing quartic modes are mechanically stable, despite
being hypostatic.

In Fig. 5, we plot the average packing fraction at jam-
ming onset versus A for all of the nonspherical particles we
considered. The data for 〈φ〉 nearly collapse onto a master
curve, which tends to 〈φ〉 ≈ 0.84 for small A − 1, as found for
packings of bidisperse disks [35], forms a peak near A − 1 ≈
10−1, and decreases strongly for A − 1 > 10−1. This result
suggests that the asphericity can serve as common descriptor
of the structural and mechanical properties of packings of
nonspherical particles, i.e., jammed packings with similar A
will possess similar properties.

In Fig. 6, we plot the average coordination number

〈z〉 = 2(Nc + 1)

N − Nr − Ns/3
, (3)

where Nc is the number of contacts in the packing. The +1 in
the factor of Nc + 1 is included to account for the −1 in the
expression for the number of contacts Nc = N0

c = 3N − 1 in
isostatic packings of nonspherical particles in 2D, where N0

c

is the isostatic number of contacts. Nr is the number of rattler
particles that have unconstrained translational and rotational
degrees of freedom. Ns is the number of “slider” particles
with a single unconstrained translational degree of freedom.

FIG. 5. Packing fraction at jamming onset 〈φ〉 (averaged over 50
packings with random initial conditions) plotted versus asphericity
A − 1 for a variety of nonspherical shapes: ellipses (circles), circulo-
lines (plus signs), circulo-triangles (triangles), circulo-pentagons
(squares), circulo-octagons (five-pointed stars), circulo-decagons
(six-pointed stars), and Reuleaux triangles (filled black circle). The
packings include N = 100 particles, except for the ellipse packings,
which contain N = 480 particles.

An example of a slider particle is the yellow particle in the
packing of circulo-lines in Fig. 3(c), which can translate along
its long axis without energy cost. Defining the coordination
number as in Eq. (3) ensures that an isostatic packing of
circulo-lines, circulo-polygons, or other nonspherical particles
will have 〈z〉 = 6. If 〈z〉 < 6, the packing is hypostatic.

In Fig. 6, we show the coordination number 〈z〉 in Eq. 3
versus A − 1 for packings of ellipses and circulo-lines for
two ways of defining a contact between two nearly parallel
circulo-lines. At low asphericities, where the particle shape
approaches a disk, a nearly parallel contact is only able to

FIG. 6. Coordination number 〈z〉 [defined in Eq. (3)] at jamming
onset as a function of asphericity A − 1 for ellipses (circles) and
circulo-lines, counting a contact between nearly parallel circulo-lines
as one contact (asterisks) or two contacts (plus signs).
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apply a small torque to the two contacting particles, making
it unlikely to constrain a rotational degree of freedom in
addition to a translational degree of freedom. Thus, at low
asphericities, nearly parallel contacts should only be counted
as a single constraint. In Fig. 6, we show that 〈z〉 for ellipses
and circulo-lines (counting nearly parallel contacts once) both
approach 4 in the limit A − 1 tends to zero.

In contrast, at large asphericities, nearly parallel contacts
between two circulo-lines prevent the particles from rotating
and translating (in a direction perpendicular to their shafts).
Thus, for large A − 1, nearly parallel contacts should be
counted as two constraints. In Fig. 6, we show that the coor-
dination number 〈z〉 for packings of circulo-lines approaches
6 in the large A − 1 limit when nearly parallel contacts are
counted twice. These results suggest that we must interpolate
between counting parallel contacts once at low asphericities,
and counting them twice as the asphericity increases.

One way to resolve the question of whether to count a
nearly parallel contact between nonspherical particles as one
or two constraints is to calculate the dynamical matrix (all
second derivatives of the total potential energy with respect
to the particle coordinates) of the static packings, and examine
the spectrum of the dynamical matrix eigenvalues, which in
the harmonic approximation give the vibrational frequencies
of the packing [37]. For details on the calculation of the entries
of the dynamical matrix for circulo-lines and circulo-polygons,
see Appendix C.

In Fig. 7, we show the eigenvalue spectrum (sorted from
smallest to largest) for static packings of circulo-lines over a
wide range of aspect ratiosA − 1 from ≈10−6 to 1 (decreasing
from top to bottom). As found in Ref. [5] for ellipse packings,
the eigenvalue spectra for packings of circulo-lines possess
several distinct regions. Region 0 (λi � 10−14, which is set by
numerical precision) corresponds to unconstrained degrees of
freedom, such as overall translations from periodic boundary
conditions, and rattler and slider particles. Region 1 (10−14 �
λi � 4 × 10−8) corresponds to “quartic modes,” whose num-
ber is determined by the number of missing contacts relative to
the isostatic contact number. For the asphericities we consider,
regions 2 and 3 correspond to eigenmodes with predominantly
rotational and translational motion, respectively.

If we focus on all but the three smallest asphericities (i.e.,
the three rightmost curves in Fig. 7), we can define a cutoff
value λc that clearly separates regions 1 and 2. For packings of
N = 100 circulo-lines at pressure P0 = 10−9, λc ≈ 4 × 10−8.
For asphericities where λc distinguishes regions 1 and 2, the
number of contacts in packings of circulo-lines satisfies Nc =
N0

c − N1, where N1 is the number of eigenvalues in region 1.
A key observation is that defining the number of contacts in
this way for intermediate and high asphericities is the same as
if Nc is determined by the number of particle contacts, with
nearly parallel contacts counted twice. For asphericities where
the difference between regions 1 and 2 is more ambiguous, we
still use λc to determine whether a given eigenvalue belongs to
region 1 or 2. For the lowest asphericities, we find that defining
Nc = N0

c − N1 corresponds to counting one constraint for each
nearly parallel contact.

In Fig. 8, we plot the average coordination number 〈z〉 from
Eq. (3) using Nc = N0

c − N1 versus A − 1 for N = 100 pack-
ings of circulo-lines and circulo-polygons. At low asphericities

FIG. 7. The eigenvalues λi of the dynamical matrix sorted from
smallest to largest for static packings of N = 100 circulo-lines at the
17 different asphericities A − 1 shown in Fig. 6 ranging from ≈10−6

to 1 and decreasing from top to bottom. Nλ = 15 000 is the total
number of eigenvalues in all of the packings at a given asphericity. For
each asphericity (different colors), we show spectra for 50 separate
packings. We label four distinct regions of the eigenvalue spectra,
0–3. Region 0 (λi � 10−14) corresponds to unconstrained degrees
of freedom (such as overall translations due to periodic boundary
conditions, rattler and slider particles), region 1 (10−14 � λi � 4 ×
10−8) corresponds to “quartic modes,” whose number is determined
by the number of missing contacts relative to the isostatic contact
number, region 2 corresponds to eigenmodes with predominantly
rotational motion, and region 3 corresponds to eigenmodes with
predominantly translational motion.

A − 1, the coordination number for packings of circulo-
lines and circulo-polygons, as well as ellipses, approaches
〈z〉 = 4, which is expected for bidisperse disk packings. At
large asphericities, 〈z〉 = 6 for packings of circulo-lines and
circulo-polygons as expected for isostatic packings with two
translational and one rotational degree of freedom per particle.
〈z〉 for ellipse packings plateaus for large A − 1. However,
the current data suggest that the plateau value is less than 6,
indicating that ellipse packings are hypostatic for all A − 1.

An interesting feature in 〈z〉(A) for static packings of
circulo-lines and circulo-polygons is the plateau in 〈z〉 that
occurs nearA − 1 ≈ 10−5 in Fig. 8. Our results suggest that the
plateau is likely an artifact of the small, but nonzero pressure
of the static packings. If the particles are overcompressed,
even slightly, nearly parallel contacts will be able to exert
larger torques than they would at zero pressure, which causes
more eigenvalues to be above the eigenvalue threshold λc, and
contacts to be counted as two constraints instead of one. Thus,
as we decrease the pressure to zero, we expect to count fewer
of these nearly parallel contacts as two constraints and the
plateau in 〈z〉 near A − 1 ≈ 10−5 will decrease. As A − 1
decreases below 10−5, the effects from overcompression are
less important, and the nearly parallel contacts are only counted
once.

In Fig. 9, we plot the eigenvalues λi sorted from small-
est to largest for static packings of five different parti-
cle shapes (circulo-lines, circulo-triangles, circulo-pentagons,
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FIG. 8. The average coordination number 〈z〉 [Eq. (3)] at jam-
ming onset is plotted versus asphericity A − 1 for packings of
N = 100 circulo-lines (plus signs), circulo-triangles (triangles),
circulo-pentagons (squares), circulo-octagons (five-pointed stars),
and circulo-decagons (six-pointed stars). These data are compared to
〈z〉 for packings of N = 480 ellipses (circles). For packings of circulo-
lines and circulo-polygons, we define 〈z〉 using Nc = N 0

c − N1. In
the inset, we show 〈z〉 as a function of pressure P0 for packings of
circulo-lines for A − 1 = 4 × 10−5 (squares), 3.6 × 10−3 (circles),
and 6.2 × 10−2 (asterisks). 〈z〉 decreases more rapidly with P0 at
lower asphericities. All data points in the inset are also plotted in the
main figure using plus signs connected by dotted lines.

circulo-octagons, and circulo-decagons) at the same aspheric-
ity,A = 1.1. We find that the eigenvalue spectra for all of these
shapes are nearly identical. This behavior differs markedly
from that in Fig. 7, where we show the eigenvalue spectra
for packings with the same particle shape (circulo-lines), but

FIG. 9. The eigenvalues i of the dynamical matrix sorted from
smallest to largest for static packings of N = 100 circulo-lines (blue),
circulo-triangles (red), circulo-pentagons (yellow), circulo-octagons
(purple), and circulo-decagons (green) at asphericity A = 1.1. Nλ =
15 000 is the total number of eigenvalues in all of the packings of a
given shape. For each particle shape, we show spectra for 50 separate
packings. Regions 0–3 are defined the same way as in Fig. 7.
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FIG. 10. Nine eigenvalues λ of the dynamical matrix from regions
1 (bottom) and 2 (top) plotted versus pressure P0 for a static packing
of N = 32 circulo-lines with asphericity A = 1.03. The dashed line
has slope 1.

at different values of the asphericity. Circulo-polygons with n

sides possess 2n − 3 parameters that specify their shape (not
counting uniform scaling of lengths). Our results suggest that
asphericity is a key parameter in determining the structure,
geometry, and physical properties of hypostatic packings.

The reason why the eigenvalues in region 1 (cf. Fig. 7)
are referred to as “quartic modes” is that, for perturbations
along the corresponding eigenvectors, the total potential energy
scales quartically with the amplitude of the perturbation, rather
than quadratically, as one would expect for mechanically
stable packings [5,6]. In Fig. 10, we plot eigenvalues from
regions 1 and 2 as a function of pressure P0 for a static
packing of N = 32 circulo-lines at asphericity A = 1.03. The
eigenvalues from region 2 are independent of pressure, whereas
the eigenvalues from region 1 scale linearly with pressure.
Thus, for packings of circulo-lines and other particle shapes
that yield hypostatic packings, the eigenvalues corresponding
to the quartic modes are zero at jamming onset (P0 = 0).
This result agrees with prior studies of hypostatic packings
of ellipses and ellipsoids [6].

For hypostatic packings, perturbations along the quartic
modes are constrained to fourth order. In Fig. 11, we show the
fourth derivatives of the total potential energy d4U/d�λ4 in the
directions of the nine eigenmodes in region 1 (that are depicted
near the bottom of Fig. 10). We find that the fourth derivatives
along eigenmodes in region 1 do not depend on pressure,
and thus remain nonzero at zero pressure. These findings
demonstrate that hypostatic packings are fully constrained at
zero pressure, in some directions by quadratic potentials and
in other directions by quartic potentials.

C. Convex versus concave constraints

Why are hypostatic packings of circulo-lines and other
nonspherical particles mechanically stable when they possess
fewer contacts than the isostatic number, Nc < N0

c ? We have
already shown that the number of missing contacts N0

c − Nc

matches the number of quartic modes along which the energy
increases quartically, not quadratically, with the perturbation
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FIG. 11. For the same packing as in Fig. 10, we plot the fourth
derivative of the total potential energy d4U/d�λ4 in the direction of the
nine eigenmodes in region 1 in the bottom of Fig. 10 as a function of
pressure P0. All of the fourth derivatives for the region 1 eigenmodes
are independent of pressure.

amplitude. In the other Nc eigendirections of the dynamical
matrix, the energy increases quadratically with the perturbation
amplitude. As a result, there are no directions in configuration
space for which these hypostatic packings can be perturbed
without energy cost, and thus they are mechanically stable.

To more fully address the question of how hypostatic
packings of nonspherical particles can be mechanically stable,
we consider the so-called “feasible region” of configuration
space near each static packing for packing fractions slightly
below jamming onset [4]. The feasible region near a given
static packing includes all configurations for which there are no
particle overlaps. The boundaries of this region are determined
by all of the interparticle contacts, each of which corresponds
to an inequality among the particle coordinates specifying
when pairs of particles do not overlap. Points in configuration
space that satisfy all of the inequalities are inside the feasible
region. For mechanically stable packings, as the packing
fraction is increased, the feasible region shrinks and becomes
bounded and compact, preventing particle rearrangements that
would allow the system to transition to a different packing. A
static packing is mechanically stable if the feasible region of
accessible configurations shrinks to a single point at jamming
onset.

The number of constraints required to bound the feasible
region depends on the curvature of the inequality constraints
in configuration space, i.e., whether the constraints are concave
or convex [4]. The inequality constraints that arise in disk
packings are always concave. In particular, in disk packings,
the curvature of each constraint is equal to minus the reciprocal
of the sum of the radii of the two disks in contact. As a result,
the number of contacts required to bound the feasible region
for a mechanically stable packing of N disks is 2N + 1 (minus
2 from overall translations in periodic boundary conditions).
Thus, hypostatic packings of nonspherical particles must pos-
sess contacts that give rise to bounding surfaces with convex
curvature, which allows packings to be mechanically stable
with fewer than the isostatic number of contacts.

FIG. 12. (a) Depiction of the feasible region of configurations
that do not possess interparticle overlaps for a single circulo-line
surrounded by three fixed points as shown in (b). This system is
generated by fixing three points in space, initializing a circulo-line
between the three points, and growing the interior circulo-line until it
reaches force and torque balance while in contact with the three points.
After finding the stable configuration, we decrease the diameter of
the interior circulo-line by 10−7. The extent of the feasible region is
shown using coordinates along the the three eigendirections (�λ1, �λ2,
and �λ3) of the dynamical matrix for the interior circulo-line. The top
contact (open circle) in (b), which is positioned along the shaft of the
circulo-line, provides the constraint with convex curvature.

In Fig. 12, we show a simple configuration involving a
circulo-line that gives rise to a convex constraint. We consider
three points at fixed positions. These points represent less
strict constraints than contacts with other circulo-lines and,
thus, if these three points can constrain a circulo-line, three
contacting circulo-lines will constrain an interior circulo-line
as well. We initialize a circulo-line at several locations between
the three points, and then increase the size of the interior
circulo-line until it is constrained by the three points. After
the circulo-line is constrained, we shrink its diameter by 10−7

so that it no longer overlaps the bounding points. The feasible
region of the slightly undercompressed circulo-line is shown
in Fig. 12(a).

For an isostatic system, four contacts are required to
constrain a circulo-line. However, we find configurations in
which a circulo-line is constrained by only three contacts.
Figure 12(a) illustrates the reason that only three contacts are
necessary: one of the contacts (open circle on the top shaft)
gives rise to a constraint with convex curvature in configuration
space. In contrast, the other two contacts (filled circles),
which are on the end caps of the circulo-line, give rise to
constraints with concave curvature. This example suggests that
only certain types of contacts between circulo-lines generate
constraints with convex curvature, and thus the number of
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FIG. 13. The volume V (squares) and surface area S (circles) of
the feasible region in Fig. 12(a) plotted as a function of the decrease
in radius 
R = Rj − R, where Rj is the radius at which the system
is fully constrained. The solid and dashed lines have slopes 2.5 and
1.5, respectively.

contacts required for mechanical stability is less than the
isostatic number when these types of contacts are present.

To verify that the circulo-line “packing” in Fig. 12(b) is
mechanically stable, we numerically calculated the volume
V and surface area S of the feasible region as a function of
the degree of undercompression, 
R = Rj − R, where Rj

is the radius of the interior circulo-line at which the system
is jammed. In Fig. 13, we show that both V and S display
power-law scaling with 
R, emphasizing that the feasible
region for hypostatic packings shrinks to a point at jamming
onset, and thus these packings are mechanically stable.

To further investigate the effect of convex and concave
constraints on a hypostatic jammed packing, we measured
the curvatures of the inequality constraints for each contact
in a static packing with N = 24 bidisperse circulo-lines with
asphericityA = 1.04. We classified the contacts into five types
as defined in Appendix A. Parallel contacts can involve the
shaft of one circulo-line (middle) and the end cap of another
(end). This arrangement gives rise to two types of contacts,
one for the circulo-line with a contact on its end and another

for the circulo-line with a contact on its middle. Similarly, the
shaft (middle) of one circulo-line can be in contact with the
end cap (end) of another, but the long axes are not parallel.
This arrangement again gives rise to two types of contacts, one
for the circulo-line with a contact on its end and another for
the circulo-line with a contact on its middle. In addition, the
ends of two circulo-lines can be in contact.

The average curvatures and standard errors from the root-
mean-square deviations from the average of the bounding
surfaces for each contact type in a static packing of N =
24 bidisperse circulo-lines with A = 1.04 are compiled in
Table II. (We find similar mean values and errors when we
average over an ensemble of 100 static packings composed of
N = 24 bidisperse circulo-lines with A = 1.04.) We find that
the standard errors in the principal curvatures for all contact
types (except the error for 〈κ2〉 for particles whose end is in
parallel contact, which is 17%) are on the order of 1% or less.
Hence, (for small A) each contact type has a well-defined
range of curvatures associated with it. Also, our preliminary
studies show that, when increasing system size by a factor of
4, the standard deviations of the curvature distributions for
all contact types decrease by roughly a factor of 2, except
for the distribution of κ2 for parallel (end-particle) contacts,
which increases by ∼60%, and κ1 for end-end contacts, which
increases by a factor of 2. However, both of these types of
contacts correspond to nonconvex constraints in configuration
space. As a result, the increasing width of these distributions
does not significantly impact whether a hypostatic packing
is mechanically stable in large systems. In contrast, when
the asphericity of the particle shape is increased, the contact
curvature distribution for most of the contact types becomes
proportionally wider. This result may be related to the fact that
packings with large asphericity approach isostaticity, though
further research is required to understand this correlation.

From these data, we can draw several conclusions about the
contribution of each type of contact to the stability of circulo-
line packings. First, end-end contacts yield concave constraints
in configuration space, and thus on their own do not give
rise to mechanically stable hypostatic packings. In contrast,
end-middle contacts have a positive principal curvature for
the circulo-line whose middle is in contact, and thus serve to
stabilize hypostatic packings. Parallel contacts also possess
a positive curvature associated with the circulo-line whose

TABLE II. The principal curvatures (〈κ1〉 and 〈κ2〉) and standard errors (given by the root-mean-square
deviations from the average) for the different types of contacts that can occur between two circulo-lines in
a N = 24 packing of bidisperse circulo-lines with asphericity A = 1.04, averaged over all contacts in the
packing of that type. We calculated κ1 = 0 for parallel (end-particle) contacts and κ2 = 0 for end-middle
(end-particle) contacts analytically, so the standard errors are not provided for those contact types. Note that
for κ2 for an end particle in a parallel contact, the magnitude of the curvature was averaged, rather than
the signed curvature because, unlike any of the other curvatures, this one fluctuated between positive and
negative. This type of averaging is denoted using an asterisk.

Contact type 〈κ1〉 〈κ2〉
Parallel (end particle) 0 (∗)(7.93 ± 1.40) × 10−9

Parallel (middle particle) −1.292 ± 0.005 0.774 ± 0.003
End-middle (end particle) −0.0261 ± 0.0004 0
End-middle (middle particle) −1.292 ± 0.002 0.774 ± 0.001
End-end −5.69 ± 0.01 −0.0246 ± 0.0002

012909-9



VANDERWERF, JIN, SHATTUCK, AND O’HERN PHYSICAL REVIEW E 97, 012909 (2018)

FIG. 14. Probability distribution P (ψ) of the contact angles ψ

in bidisperse ellipse (N = 480) and circulo-line (N = 100) packings
at several asphericities: ellipses at A − 1 = 0.19 (six-pointed stars),
5 × 10−3 (plus signs), and 4 × 10−5 (exes), and circulo-lines at A −
1 = 0.18 (diamonds), 4 × 10−3 (squares), and 4 × 10−5 (circles). In
the inset, we define the contact angle ψ as the angle between the shaft
of a circulo-line and the vector pointing from its center to the point of
contact with another circulo-line. We use a similar definition for the
contact angle for ellipses. Packings of circulo-lines, as well ellipses,
favor parallel contacts, even at small asphericities.

middle is in contact. However, note that the concave curvature
for circulo-lines whose end is in parallel contact is much
smaller than the concave curvature of the end circulo-line for
end-middle contacts. This means that for circulo-lines with end
contacts, the parallel contacts are more “stabilizing” than the
end-middle contacts, and therefore they occur more frequently
in mechanically stable hypostatic circulo-line packings than
other end-middle contacts.

The above observations about the curvatures of the in-
equality constraints in configuration space can help explain
the distribution of contact angles P (ψ) in static packings
of elongated particles [38,39] shown in Fig. 14. This figure
shows that, even for packings of circulo-lines at very small
asphericities, parallel contacts are highly probable, despite
the fact that the range of angles for parallel contacts at low
asphericities is small. This behavior for P (ψ) can be explained
by the fact that end-middle and parallel contacts can contribute
to making a hypostatic packing mechanically stable, whereas
end-end contacts cannot. (See Table II.) Thus, end-middle and
parallel contacts (whose contact angles are close to 90◦ at low
asphericities) must be present to stabilize hypostatic packings
of low-asphericity circulo-lines. As shown in Fig. 14, P (ψ) is
similar for both ellipse and circulo-line packings.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we carried out computational studies of
static packings of frictionless nonspherical particles in 2D.
We developed an interparticle potential for circulo-lines and
circulo-polygons that generates continuous and differentiable
pair forces and torques as a function of the particle coordi-
nates. As a result, we are able to compare the structural and

mechanical properties of mechanically stable packings of nine
different nonspherical particle shapes: circulo-lines, circulo-
triangles, circulo-pentagons, circulo-octagons, and circulo-
decagons, asymmetric dimers, dumbbells, Reuleaux triangles,
and ellipses. Our studies place a particular emphasis on the
question of which particle shapes give rise to hypostatic
mechanically stable packings with fewer contacts than the
isostatic number.

We conjecture that to form hypostatic mechanically stable
packings, strictly and effectively convex, frictionless particles
must satisfy the following two criteria: (i) the particle has one
or more nontrivial rotational degrees of freedom, and (ii) the
accessible (nonexcluded) contact area cannot be achieved by a
union of a finite number of disks. If the particle does not satisfy
both criteria, we expect it to form isostatic packings. Packings
of the nine particle shapes we considered are consistent with
this conjecture. Future research can investigate methods to
analytically prove this conjecture [40].

We then studied the packing fraction φ and coordination
number z at jamming onset for packings of a number of
different types of nonspherical shapes in 2D as a function
of asphericity A. To do this, we resolved the ambiguity in
the constraint counting of nearly parallel contacts of circulo-
lines and circulo-polygons using the branched structure of
the eigenvalue spectra of the dynamical matrix. In future
research, we will study the coordination number of packings
of sphero-cylinders and sphero-polygons in 3D, and compare
the results to those in 2D, since it is extremely unlikely for
sphero-cylinders and sphero-polyhedra to form nearly parallel
contacts along their edges.

We find that the packing fraction and coordination number
of hypostatic packings obey approximate master curves when
plotted versus the asphericity. This result agrees qualitatively
with prior studies, which find that the coordination number
increases with the isoperimetric quotient (that is similar to
asphericity) in crystalline packings of polyhedra [41,42].
Further, the eigenvalue spectra for different particle shapes, at
the same A, collapse. These results suggest that asphericity
is a key parameter in determining the structure, geometry,
and mechanical properties of hypostatic packings. Other stud-
ies [43] have shown that the second virial coefficient in the
equation of state for hard particle fluids is a linear function
of the particle asphericity. This result is consistent with the
collapse of the packing fraction and coordination number at
jamming onset onto a master curve when plotted against the
asphericity. For n-sided circulo-polygons, there are 2n − 3
parameters that specify their shape. In future studies, we will
investigate additional shape parameters, such as the ratios of
the area moments and others [44], to better understand the
coupling between the wide shape parameter space and the
properties of hypostatic packings of nonspherical particles.

We also demonstrated that hypostatic packings of circulo-
lines (and by analogy circulo-polygons) are mechanically
stable by showing that even though the eigenvalues of the
dynamical matrix for the quartic modes tend to zero at zero
pressure, the fourth derivatives of the total potential energy in
the directions of the quartic modes do not. Thus, hypostatic
packings of nonspherical particles are stable to perturbations
in all directions in configuration space. Perturbations in some
directions give rise to quadratic potentials, whereas other
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FIG. 15. A contact between the end cap of one circulo-line and
the middle of another. The separation between the circulo-lines rij

is indicated by the dotted line between the circulo-line shafts. The
separation vector �rij connects the end of the shaft of one circulo-
line to the shaft of the other and is perpendicular to shaft of the circulo-
line with the middle contact. The overlap is defined as δ = σij − rij ,
where σij is the sum of the end cap radius and the half-width of the
shaft it overlaps.

directions give rise to quartic potentials. In the directions with
quartic potentials, we expect large anharmonic contributions
to the vibrational and mechanical response [45].

In addition, we measured the curvatures of the inequality
constraints that arise from interparticle contacts in hypostatic
packings of circulo-lines to better understand the grain-scale
mechanisms that allow hypostatic packings to be mechanically
stable. The contacts in isostatic disk packings give rise to
inequality constraints with only concave (negative) curvatures.
In contrast, hypostatic packings of circulo-lines (and other
nonspherical particles) possess different types of contacts
(e.g., end-end and end-middle). Some types yield inequality
constraints with concave curvatures and others yield inequality
constraints with convex curvatures. We find that contacts
with convex inequality constraints are present even at small
asphericities. The contacts with convex inequality constraints
allow the feasible region of slightly undercompressed hypo-
static packings to be compact, bounded, and shrink to zero in
the limit that the free volume tends to zero. In future research,
we will investigate whether a generalization of the isocounting
conjecture to nonspherical particles can be derived based on
these findings.
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FIG. 16. When two circulo-lines possess a parallel contact, it is
counted twice, as two end-middle contacts. The separations rij are
depicted by the vertical dotted lines between the circulo-line shafts,
and �rij points from the end of one of the shafts to the other and is
perpendicular to the shafts. The overlap is given by δ = σij − rij for
both contacts, where σij is the sum of the end cap radius and the
half-width of the shaft it overlaps.

APPENDIX A: CONTINUOUS POTENTIAL BETWEEN
CIRCULO-LINES AND CIRCULO-POLYGONS

The interparticle potential we implement is similar to
others used for simulations of faceted and sphero-polyhedral
particles [29–33]. However, we made several adjustments to
the potential to handle transitions between different types of
contacts to ensure continuity and differentiability.

The repulsive potential between two circulo-lines is given
by Eq. (1), where rij is the magnitude of �rij , which points
from the location where the force is applied on circulo-line
j to the location where the force is applied on circulo-line i.
These points of contact can be located on the ends or the shaft
(middle) of a circulo-line. In this appendix, we define the
overlap distance δ = σij − rij , which will depend on the type
of contact that occurs between two circulo-lines.

1. Types of contacts

There are three general types of interparticle contacts that
occur in packings of circulo-lines: (1) the end of one circulo-
line is in contact with the middle of another (Fig. 15), (2) the
shafts of two circulo-lines are in contact and the circulo-lines
are nearly parallel (Figs. 16 and 17), and (3) the ends of two
circulo-lines are in contact (Fig. 18). Below, we define the
overlap distance δ in the circulo-line potential [Eq. (1)] for
each type of contact.

FIG. 17. When the shafts of two contacting circulo-lines are close
to parallel, such that both end caps overlap the shaft of the other
circulo-line, the contact is counted twice as for parallel contacts. Each
separation vector �rij (depicted by dotted lines between circulo-line
shafts) points from the end of the shaft of the circulo-line with an end
contact to the shaft of the circulo-line with the middle contact, and is
perpendicular to the shaft of the circulo-line with the middle contact.
The overlaps are given by δ1,2 = σij − rij for the two contacts with
different separations, where σij is the sum of the end cap radius and
the half-width of the shaft it overlaps.
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FIG. 18. An end-end contact between the end caps of two circulo-
lines. The separation �rij between circulo-lines (dotted line) gives the
distances between the ends of the shafts of the two circulo-lines. The
overlap is given by δ = σij − rij , where σij is the sum of the radii of
the end caps.

a. End-middle contacts

End-middle contacts occur when the end cap of one circulo-
line makes contact with the middle of another circulo-line, but
does not overlap with either of the other circulo-line’s end
caps. (See Fig. 15.) In this case, we assume that the separation
vector �rij between circulo-lines points from the end of the shaft
of the circulo-line with the end contact to the shaft of the other
circulo-line. �rij is perpendicular to the shaft of the circulo-
line with the middle contact. The overlap between circulo-
lines with an end-middle contact is δ = σij − rij , as shown in
Fig. 15.

b. Parallel and nearly parallel contacts

For parallel and nearly parallel contacts, an end cap of both
circulo-lines overlaps the shaft of the other circulo-line. In
this case, the spring potential in Eq. (1) for both overlaps
is calculated as for end-middle contacts. If the circulo-lines
are parallel, as in Fig. 16, δ = σij − rij is the same for both
overlaps. However, for nearly parallel contacts, as in Fig. 17,
the separations are different for the two end-middle overlaps.
This method for treating end-middle, parallel, and nearly
parallel contacts ensures continuity and differentiability of the
potential as a function of the particle coordinates. If the circulo-
lines in Fig. 17 rotate until their orientations match Fig. 15,
the potential, force, and torque must all change continuously.
Using our method, δ2 decreases continuously to zero as the
contact evolves from that in Fig. 17 to that in Fig. 15. In
addition, δ1 decreases continuously to zero as the circulo-lines
in Fig. 17 rotate until δ2 is the only overlap.

c. End-end contact

Also, suppose that we slide the two circulo-lines in Fig. 16
away from each other until they are similar to the configuration
in Fig. 18 and form an end-end contact. In this case, we assume
that the two overlap potentials add together as soon as the two
relevant ends of the circulo-line shafts slide past each other.
Therefore, to ensure continuity, the interaction potential for an
end-end contact must be twice as large as that for an end-middle
contact. Hence, we use U = kδ2 for end-end contacts.

However, this treatment of end-end contacts creates a
discontinuity for the configuration in Fig. 19. If we imagine
sliding the circulo-lines past each other until the overlap δ1 is
associated with an end-end contact, the potential will suffer
a discontinuous jump from 1

2kδ2
1 to kδ2

1 since the end-end
contact potential is twice as large as an end-middle potential. To
remedy this discontinuity, we add the end-end contact potential

FIG. 19. When a contact between circulo-lines is close to the
boundary between the end of one and middle of another circulo-line,
we include both the end-end and end-middle overlaps to ensure
continuity as the contact crosses the boundary. The separation vector
�rij associated with the end-middle overlap δ1 (vertical dotted line)
points from the end of the shaft of one circulo-line to the shaft of the
other, such that it is perpendicular to the shaft. The separation vector
associated with the end-end overlap δ2 (diagonal dotted line) points
from the end of the shaft of one of the circulo-lines to the end of the
shaft of the other overlapping circulo-line.

between the two relevant end points as soon as they become
close enough to overlap. However, we do not make the end-end
potential twice as large in this case. Hence, the potential in this
case is given by U = 1

2k(δ2
1 + δ2

2). Thus, when we perform
that same sliding transformation, the potential will grow
continuously from 1

2kδ2
1 to kδ2

1 as δ2 grows continuously from
0 to δ1. Note that we do not add this end-end overlap potential
if two end-middle contacts are present, as in Fig. 20, because
in that case, the potential will already change continuously as

FIG. 20. We do not calculate the end-end overlap potential for
parallel and nearly parallel circulo-lines since this would lead to a
discontinuity if the configuration transitions to an end-end contact by
sliding. Instead, we choose the circulo-line separations for parallel and
nearly parallel contacts as shown in Fig. 16. The separation associated
with an end-end contact is indicated by the dashed line with an x in
the middle.
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FIG. 21. A schematic of an end-middle contact between two
circulo-triangles. The separation rij between circulo-triangles (dotted
line) is given by the perpendicular distance between the vertex of the
circulo-triangle with the end contact and the side of the closest side
of the triangle in the circulo-triangle with the middle contact. The
overlap δ = σij − rij , where σij is the sum of the end cap radius and
half-width of the shaft it overlaps.

described in the previous subsection, and hence there is no
discontinuity to remedy.

2. Generalizing the circulo-line potential to circulo-polygons

Generalizing our continuous circulo-line potential to
circulo-polygons, such as those pictured in Fig. 21, is straight-
forward. We simply calculate the potential between all pairs of
circulo-lines that comprise each circulo-polygon. For example,
in Fig. 21, since the vertex of the top circulo-triangle is shared
by two circulo-lines, we count the end-middle contact twice,
and hence the overlap potential is U = kδ2.

APPENDIX B: GENERATION OF CIRCULO-POLYGONS

A circulo-polygon is formed through a Minkowski sum of
a polygon and a disk with a radius r [46], which is equivalent
to the sweeping of the disk around the profile of the polygon
as in Fig. 22(a). The shape of a circulo-polygon with n edges
is fully specified by 2n − 3 independent parameters. In this
work, we focus on the asphericity shape parameter A, which
measures the deviation of a given shape from a circle in 2D.

We study bidisperse packings of circulo-polygons with
asphericity A for which half of the circulo-polygons are large
and half are small. The large circulo-polygons have areas
that satisfy aL = 1.42aS , where aL,S is the area of the large
and small circulo-polygons, respectively. The large circulo-
polygons (and small ones) have different shapes at the same

FIG. 22. (a) A circulo-polygon is the Minkowski sum of a
polygon (e.g., the regular hexagon on the left) and a disk with
radius r , which is “swept” along the edges of the polygon to form
the circulo-polygon (the red shape on right). (b) Schematic of the
generation of a circulo-polygon at a given asphericity A. First, we
select n random points on a unit circle (blue curve) with origin O

(where n is the desired number of edges). We then randomly choose
vertex J and either stretch or shorten the distance between J and
O (dashed line) by an amount randomly chosen between 0 and the
distance JK to adjust A to match the target asphericity.

A. We generate different circulo-polygons at the same A using
the following two-step approach: (1) We first randomly select
n points on a unit disk as the vertices of an n-sided polygon.
The radius r of the circulo-polygon is set to be n percent
of the perimeter of the polygon. (2) If the asphericity of the
current circulo-polygon is smaller than the target A, a vertex
J is randomly chosen and then stretched or shortened along
the direction between the vertex J and the center O of the
unit disk, by a distance randomly chosen between 0 and the
distance between J and the intersection of JO with the line
segment connecting the two neighboring vertices, as shown in
Fig. 22(b). This deformation is accepted only if the asphericity
of the new shape is closer to A than the original and the new
shape is still effectively convex. If the asphericity of the current
circulo-polygon exceeds A, the radius r is increased to match
the target A. We repeat step 2 until a circulo-polygon with A
is obtained.

APPENDIX C: DYNAMICAL MATRIX ELEMENTS
OF CIRCULO-POLYGON PACKINGS

In this Appendix, we provide explicit expressions for the
dynamical matrix elements for static packings of circulo-
polygons that interact via the purely repulsive linear spring
potential in Eq. (1). In this expression, Ri is radius that forms
the edge of circulo-polygon i and �rji is the separation vector
from circulo-polygon i to j , which is is given by

�rji = �cji + Rj �vn − Ri �vm + Rj ûnln − Ri ûmlm, (C1)
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where �cji = (xj − xi,yj − yi) ≡ (p,q) is the center-to-center

separation between circulo-polygons, Ri = [cos θi − sin θi

sin θi cos θi
] is

the rotation matrix in 2D, θi is the orientation of particle i

relative to the x axis, �vm is the vector from the center of particle
i to the center of its corresponding edge m when particle i at
zero rotation, ûm is the unit vector along edgem at zero rotation,
and lm indicates the distance between the contact point and the
center of edge m.

The dynamical matrix requires the calculation of the second
derivatives of the total potential energy U , and can be expressed
in terms of the first and second derivatives of the contact
distance rji with respect to the particle coordinates:

∂2U

∂ξi∂ξj

= ∂rji

∂ξi

∂rji

∂ξj

− (σji − rji)
∂2rji

∂ξi∂ξj

, (C2)

where ξi = xi , yi , or θi ,

∂rji

∂ξi

= �rji

rji

· ∂�rji

∂ξi

, (C3)

and

∂2rji

∂ξi∂ξj

= 1

rji

(
∂�rji

∂ξi

· ∂�rji

∂ξj

+ �rji · ∂2�rji

∂ξi∂ξj

− ∂rji

∂ξi

∂rji

∂ξj

)
.

(C4)

There are two types of contacts among circulo-polygons. The
first type is a vertex-to-edge contact. Assuming the end point
of edge n on particle j is in contact with edge m on particle i,
ln is half of the length of edge n, and lm can be written as

lm = (�cji + Rj �vn − Ri �vm + Rj ûnln) · Ri �um. (C5)

In Eq. (C5), �vm, �vn, ûm, and ûn are defined as

�vm = (m cos a,m sin a), (C6)

�vn = (n cos b,n sin b), (C7)

ûm = (cos d, sin d), (C8)

and

ûn = (cos e, sin e), (C9)

where m and n are the magnitudes of �vm and �vn, respectively,
and the angles a, b, d, and e are the orientations of �vm, �vn, ûm,
and ûn, respectively. The contact distance rji is

rji = |q cos(d + θi) − m sin(a − d) + n sin β

+ ln sin 
 − p sin(d + θi)|, (C10)

where

β = b − d + θj − θi (C11)

and


 = e − d + θj − θi . (C12)

The nonzero first and second derivatives can be expressed
as

∂rji

∂xi

= � sin(d + θi), (C13)

∂rji

∂yi

= −� cos(d + θi), (C14)

∂rji

∂θi

= −� [n cos β + ln cos 


+p cos(d + θi) + q sin(d + θi)], (C15)

∂rji

∂xj

= −∂rji

∂xi

, (C16)

∂rji

∂yj

= −∂rji

∂yi

, (C17)

∂rji

∂θj

= −� [n cos β + ln cos 
], (C18)

∂2rji

∂xi∂θi

= −∂rji

∂yi

, (C19)

∂2rji

∂yi∂θi

= ∂rji

∂xi

, (C20)

∂2rji

∂θi∂θi

= −� [n sin β + ln sin 


−p sin(d + θi) + q cos(d + θi)], (C21)

∂2rji

∂xj ∂θi

= ∂rji

∂yi

, (C22)

∂2rji

∂yj ∂θi

= −∂rji

∂xi

, (C23)

∂2rji

∂θj ∂θi

= � [n sin β + ln sin 
], (C24)

and

∂2rji

∂θj ∂θj

= − ∂2rji

∂θj ∂θi

. (C25)

In the expressions in Eqs. (C13)–(C25), � is defined as

� = Sgn[q cos(d + θi) − m sin(a − d) + n sin β

+ ln sin 
 − p sin(d + θi)], (C26)

where

Sgn(z) =
⎧⎨
⎩

1, z > 0
0, z = 0
−1, z < 0.

(C27)

All of the other first and second derivatives are zero.
The second type of contact between circulo-polygons is a

contact between two vertices. In this case, lm and ln are each
half the lengths of edges m and n, respectively. The x and y

components of separation vector �rji are

xji = p + n cos(b + θj ) + ln cos(e + θj )

−m cos(a + θi) − lm cos(d + θi) (C28)
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and

yji = q + n sin(b + θj ) + ln sin(e + θj )

−m sin(a + θi) − lm sin(d + θi). (C29)

For vertex-vertex contacts, the nonzero first and second
derivatives are

∂rji

∂xi

= −xji

rji

, (C30)

∂rji

∂yi

= −yji

rji

, (C31)

∂rji

∂θi

= 1

rji

{−lm[q cos(d + θi) − p sin(d + θi)

+ n sin β + ln sin 
] + m[p sin(a + θi)

− q cos(a + θi) − n sin ω + ln sin μ]}, (C32)

∂rji

∂xj

= −∂rji

∂xi

, (C33)

∂rji

∂yj

= −∂rji

∂yi

, (C34)

∂rji

∂θj

= 1

rji

{ln[q cos(e + θj ) − p sin(e + θj )

−m sin μ + lm sin 
] + n[q cos(b + θj )

−p sin(b + θj ) + m sin ω + lm sin β]}, (C35)

∂�rji

∂xi

· ∂�rji

∂xi

= ∂�rji

∂yi

· ∂�rji

∂yi

= ∂�rji

∂xj

· ∂�rji

∂xj

= ∂�rji

∂yj

· ∂�rji

∂yj

= 1,

(C36)

∂�rji

∂xi

· ∂�rji

∂xj

= ∂�rji

∂yi

· ∂�rji

∂yj

= −1, (C37)

∂�rji

∂xi

· ∂�rji

∂θi

= −m sin(a + θi) − lm sin(d + θi), (C38)

∂�rji

∂xi

· ∂�rji

∂θj

= n sin(b + θi) + ln sin(e + θj ), (C39)

∂�rji

∂yi

· ∂�rji

∂θi

= m cos(a + θi) + lm cos(d + θi), (C40)

∂�rji

∂yi

· ∂�rji

∂θj

= −n cos(b + θi) − ln cos(e + θj ), (C41)

∂�rji

∂θi

· ∂�rji

∂θi

= l2
m + m2 + 2lmm cos(a − d), (C42)

∂�rji

∂θi

· ∂�rji

∂xj

= −∂�rji

∂xi

· ∂�rji

∂θi

, (C43)

∂�rji

∂θi

· ∂�rji

∂yj

= −∂�rji

∂yi

· ∂�rji

∂θi

, (C44)

∂�rji

∂θi

· ∂�rji

∂θj

= −n(lm cos β + m cos ω)

− ln(lm cos 
 + m cos μ), (C45)

∂�rji

∂xj

· ∂�rji

∂θj

= −∂�rji

∂xi

· ∂�rji

∂θj

, (C46)

∂�rji

∂yj

· ∂�rji

∂θj

= −∂�rji

∂yi

· ∂�rji

∂θj

, (C47)

∂�rji

∂θj

· ∂�rji

∂θj

= l2
n + n2 + 2lnn cos(b − e), (C48)

and

�rji · ∂2�rji

∂θi∂θi

= −∂�rji

∂θi

· ∂�rji

∂θi

− ∂�rji

∂θi

· ∂�rji

∂θj

+p
∂�rji

∂yi

· ∂�rji

∂θi

− q
∂�rji

∂xi

· ∂�rji

∂θi

, (C49)

�rji · ∂2�rji

∂θj ∂θj

= −∂�rji

∂θj

· ∂�rji

∂θj

− ∂�rji

∂θi

· ∂�rji

∂θj

+p
∂�rji

∂yi

· ∂�rji

∂θj

− q
∂�rji

∂xi

· ∂�rji

∂θj

, (C50)

where

ω = b − a + θj − θi (C51)

and

μ = a − e − θj + θi . (C52)

The other derivatives ∂�rji

∂ξi
· ∂�rji

∂ξj
and �rji · ∂2�rji

∂ξi∂ξj
that are not listed

above are zero.
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