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Amorphous materials such as metallic, polymeric, and colloidal glasses exhibit complex preparation-dependent
mechanical response to applied shear. In particular, glassy solids yield, with a mechanical response that transitions
from elastic to plastic, with increasing shear strain. We perform numerical simulations to investigate the
mechanical response of binary Lennard-Jones glasses undergoing athermal, quasistatic pure shear as a function
of the cooling rate R used to prepare them. The ensemble-averaged stress versus strain curve 〈σ (γ )〉 resembles
the spatial average in the large size limit, which appears smooth and displays a putative elastic regime at small
strains, a yielding-related peak in stress at intermediate strain, and a plastic flow regime at large strains. In contrast,
for each glass configuration in the ensemble, the stress-strain curve σ (γ ) consists of many short nearly linear
segments that are punctuated by particle-rearrangement-induced rapid stress drops. To explain the nonlinearity
of 〈σ (γ )〉, we quantify the shape of the small stress-strain segments and the frequency and size of the stress drops
in each glass configuration. We decompose the stress loss [i.e., the deviation in the slope of 〈σ (γ )〉 from that at
〈σ (0)〉] into the loss from particle rearrangements and the loss from softening [i.e., the reduction of the slopes of
the linear segments in σ (γ )], and then compare the two contributions as a function of R and γ . For the current
studies, the rearrangement-induced stress loss is larger than the softening-induced stress loss, however, softening
stress losses increase with decreasing cooling rate. We also characterize the structure of the potential energy
landscape along the strain direction for glasses prepared with different R, and observe a dramatic change of the
properties of the landscape near the yielding transition. We then show that the rearrangement-induced energy
loss per strain can serve as an order parameter for the yielding transition, which sharpens for slow cooling rates
and in large systems.

DOI: 10.1103/PhysRevE.96.032602

I. INTRODUCTION

Glass formation occurs in many different materials, span-
ning an enormous range of length scales, including atomic
alloys, organic compounds, ceramics, and dense colloidal
suspensions [1,2]. In particular, metallic glasses have received
significant attention recently for their promise in technological
applications [3–6] that utilize their unique combination of
properties (e.g., high strength and elasticity) and processability
[7–9].

Glasses are often generated by cooling a system in the liquid
state sufficiently rapidly such that crystallization is avoided and
the system remains disordered at low temperatures [10]. The
mechanical response of glasses to applied stress is complex,
including strain hardening [11], plastic yielding [12–17], and
brittle failure [18–20], and the particular response that is
observed for a given glass sample depends on the protocol
used to prepare and characterize it (e.g., its thermal history)
[21]. The cooling rate determines the fictive temperature,
which quantifies the degree of structural relaxation that has
occurred during the thermal quench [22–24]. The fictive
temperature significantly affects mechanical properties, such
as the ductility [20,25–29], shear band formation [30], quality
factor of vibrations [5], and the relation between stress versus
strain under quasistatic compression or tension [31,32].

The fictive temperature defines the average energy of
glasses in the potential energy landscape (PEL) [10,33], which

gives the potential energy of the system as a function of all
of the particle coordinates (and boundary conditions). The
PEL has been used recently to describe the Gardner transition,
the temperature below which the separations between basins
in the landscape becomes fractal [34,35], super-Arrhenius
structural relaxation [36], as well as reversibility and memory
encoding during cyclic shear in glasses [37,38]. Studies have
also quantified the width and depth of basins in the PEL using
thermal activation and saddle-point identification methods
[39,40]. This prior work showed that the sizes of basins are
smaller for more rapidly cooled glasses, while asserting that the
curvature of the basins is insensitive to the cooling rate. Other
computational studies have applied external shear to study
the evolution of the system as the PEL deforms with strain
[41–44], which strongly influences the mechanical response
of glasses. Instead of focusing on small strain intervals near
mechanical instabilities, in this work, we will map out the full
PEL in the strain direction.

In contrast to crystalline materials, where the creation of
and interaction between topological defects controls the me-
chanical response, it is more difficult to identify the structural
defects that control the mechanical response of glasses. In
glasses, strong nonaffine motion in response to deformation is
concentrated in “shear transformation zones” (STZs) [45–47].
Researchers have observed that particles occurring in STZs
correlate with those that possess low local yield stress [48] and
participate in soft modes defined from the vibrational density
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FIG. 1. The von Mises stress σ versus strain γ for five glass
samples (dark gray curves) with N = 2000 particles prepared at
cooling rate R = 10−4 undergoing AQS pure shear. The ensemble-
averaged stress 〈σ 〉 over 500 independent samples is shown as the
black dashed curve. The left inset provides a closeup of the stress
in the strain interval 0.0440 to 0.0505, highlighting three of the
stress drops with open circles at the start of the drop and red lines
following the drop. The right inset is a closeup of the middle stress
drop in the left inset. The gray solid line indicates forward shear
increments of δγ = 10−4, i.e., from point A at γ = 0.0462 to point B

at γ + δγ = 0.0463. The blue dotted line indicates backward shear
from point B at γ + δγ = 0.0463 to point C at γ = 0.0462. The
magnitude of the shear stress difference for this rearrangement is
|�σ (γ )| = |σA − σC | at γ = 0.0462.

of states [49,50]. These prior studies have shown that with
increasing applied shear, the density of STZs increases, the
elastic regions decrease in size, STZs percolate, and plastic
deformation occurs [51]. Thus, rearrangements and nonaffine
motion in STZs also strongly impact mechanical response.

In this article, we perform computer simulations of
model structural (binary Lennard-Jones) glasses undergoing
athermal, quasistatic (AQS) pure shear [43] to study their
mechanical response as a function of the cooling rate used to
prepare them. In Fig. 1, we show the shear stress versus strain
during AQS pure shear for five glass samples, all prepared
at the same cooling rate. While the ensemble-averaged shear
stress versus strain is smooth, the curve for each individual
sample is not [52]. The left inset of Fig. 1 shows that the shear
stress versus strain curve for a single configuration is composed
of many nearly linear segments punctuated by stress drops over
narrow strain intervals. Similar behavior occurs for the total
potential energy per particle U (and other quantities) versus
strain, except in the case of U , the segments are portions of
parabolas. During the strain intervals with continuous variation
of σ or U , the system remains in a series of related minima in
the PEL. At the strains corresponding to the stress drops, the
system becomes unstable, particles rearrange, and the system
evolves to a new lower minimum in the PEL [41–43].

Thus, it is clear that the highly nonlinear shape of the
ensemble-averaged stress, potential energy, and other quanti-
ties versus strain are determined by (1) the statistics of particle

rearrangements including both the frequency and size of
rearrangements and (2) changes in the form of the continuous
regions of the piecewise curves (i.e., softening or a decrease
in the slopes of stress versus strain) between rearrangements.
There have been a number of previous computational studies
focusing on either particle rearrangements [12,13,25,53] or
softening of the shear modulus [52,54] of binary Lennard
Jones glasses under applied deformation. In this article, we
will study both and compare the relative contributions from
particle rearrangements and softening in determining the
ensemble-averaged nonlinear mechanical response of sheared
glasses as a function of the cooling rate used to prepare them.

Note that for much more rapidly cooled glasses than those
shown in Fig. 1, strain hardening can occur during AQS pure
shear in which the shear stress increases after a rearrangement
and/or the slopes of the continuous regions of shear stress
increase with strain. Here, we will focus on the cooling-rate
regime where strain softening behavior is dominant.

We seek to understand the highly nonlinear behavior of the
ensemble-averaged stress 〈σ 〉 and potential energy 〈U 〉 versus
strain (Fig. 1). Being able to explain the ensemble-averaged
mechanical response is important for several reasons. First, we
will show below that the system size dependence of ensemble-
averaged quantities (like 〈σ 〉 and 〈U 〉) is weak even for modest
system sizes. This result suggests that the ensemble average is
similar to the spatial average in the large system limit. Second,
the magnitude of the particle rearrangements decreases and the
frequency of particle rearrangements increases with increasing
system size [12]. Thus, it becomes increasingly difficult to
distinguish the continuous regions in the mechanical response
from drops due to particle rearrangements in large systems.

As shown in Fig. 1, as the applied shear strain increases,
the ensemble-averaged stress 〈σ 〉 becomes nonlinear in strain,
the stress reaches a peak, and then decreases to a plateau
value in the large-strain limit. In the strain interval between
the strain at which the slope of the stress versus strain curve
begins to deviate significantly from that at zero strain and
the steady-state strain regime, yielding occurs and the system
transitions from an amorphous solid to a liquidlike state that
can sample many different configurations. However, it is
difficult to precisely define the yielding transition from the
smooth, ensemble-averaged stress versus strain 〈σ (γ )〉 [55].
There are many fundamental questions concerning yielding in
glasses since it involves a transition between two disordered
states. For example, does yielding represent a phase transition
and, if so, what is the appropriate order parameter that
characterizes the transition [13]?

Recent studies of the system-size scaling of particle rear-
rangement statistics [12,13], configurational overlap between
minima in the PEL [14], changes in symmetry of nearest-
neighbor structure [15], diffusivity of rearranging particles
[16], and onset of irreversibility during cyclic shear [17,37,55]
have suggested that yielding in glassy materials can be
described as a nonequilibrium first-order phase transition.
For example, the rearrangement frequency displays power-law
scaling with system size, with a scaling exponent that changes
strongly as the strain approaches the yield strain [13]. Beyond
the yield strain, the exponent reaches a plateau value that is
independent of the cooling rate. These studies have also shown
that the yielding transition becomes less sharp with increasing
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cooling rate [13]. However, much more work is needed to fully
understand the cooling-rate dependence of the rearrangement-
and softening-induced losses near yielding.

We present several key results in this study. First, we show
that the loss in stress from rearrangements is dominant over
the softening-induced stress loss, both of which have different
cooling rate and strain dependence. Second, we quantify the
rearrangement- and softening-induced potential energy loss as
a function of cooling rate and strain. We measure the geometric
features of the basins in the PEL along the strain direction
and find that the features of the PEL change dramatically near
yielding. Third, we propose additional order parameters for the
yielding transition based on the stress or energy loss per strain
from rearrangements and softening. The stress (or energy) loss
per strain increases rapidly near yielding and increasing the
system size leads to a sharper transition. Finally, we calculate
the distribution of energy drops from rearrangements as a
function of strain for different cooling rates. We find that the
distribution of energy drops is exponential with an energy scale
that also changes dramatically near yielding.

The remainder of the article is organized as follows.
In Sec. II, we describe the computer simulations used to
prepare and shear the glasses at zero temperature, the physical
quantities that will be measured during the applied shear,
and the method employed to decompose the shear stress and
potential energy losses into contributions from rearrangements
and from softening. Section III presents the results from the
stress and energy loss decompositions. We also characterize
the geometric features of PEL basins along the strain direction.
In addition, we identify quantities that change significantly
with strain near yielding and assess system-size effects. In
Sec. IV, we present our conclusions and describe promising
future research directions concerning sheared glasses. In the
Appendix, we describe correlations between local structural
quantities (such as the local density and composition) and
particle rearrangements.

II. METHODS

Our computational studies focus on model binary Lennard-
Jones mixtures, which have been shown to be good glass
formers. The computer simulations are carried out in three
stages: (1) initialization of the liquid state; (2) cooling the
liquid state to a zero-temperature glass at a given rate and
fixed low pressure; and (3) application of AQS pure shear
deformation.

We first perform molecular dynamics (MD) simulations
of binary Lennard-Jones liquids in three dimensions under
periodic boundary conditions with constant particle number
N and pressure P . We consider 80% large (type A) and 20%
small (type B) spherical particles by number (both with mass
m) in a cubic box with volume V . The particles interact
pairwise via the shifted-force version of the Lennard-Jones
potential u(rij ) = 4εij [(σij /rij )12 − (σij /rij )6] with a cutoff
distance rc = 2.5σij , where rij is the separation between
particles i and j . The energy and length parameters follow
the Kob-Andersen mixing rules [56]: εAA = 1.0, εBB = 0.5,
εAB = 1.5, σAA = 1.0, σBB = 0.88, and σAB = 0.8. Length,
energy, temperature, pressure, and time scales are expressed
in units of σAA, εAA, εAA/kB , εAA/σ 3

AA, and σAA

√
m/εAA,

respectively, where kB is Boltzmann’s constant [57]. We
considered systems with N = 250, 500, 1000, 2000, and 4000
particles to study system-size effects.

To set the temperature and pressure, we incorporate a Nosé-
Hoover thermostat and barostat and integrate the equations
of motion using a second-order simplectic integration scheme
[58,59] with time step �t = 10−3. We first equilibrate systems
in the liquid regime at constant temperature T0 = 0.6 (larger
than the glass transition temperature Tg ∼ 0.4 [60]) and
pressure P = 0.025 with randomized initial particle positions
and velocities. We then cool the systems into a glassy state at
zero temperature using a linear cooling ramp, T (t) = T0 − Rt ,
over a range of cooling rates from R = 10−1 to 10−6, all
of which are above the critical cooling rate to ensure all
zero-temperature samples are disordered. For each cooling
rate, we consider at least Nc = 500 configurations with random
initial conditions.

After generating each zero-temperature glass, we apply
AQS pure shear at fixed pressure. For each strain step, we
expand the box length and move all particles affinely in the
x direction by a small strain increment δγx = δγ = 10−4 and
compress the box length and move all particles affinely in the y

direction by the same strain increment δγy = −δγ . Following
each strain step, we minimize the total enthalpy H = U + PV

at fixed volume V , whereU = ∑
i>j u(rij ) is the total potential

energy. We then either compress or expand the system in the
z direction to move the system toward the target pressure
P0 = 10−8. The enthalpy minimization process and scaling of
the system in the z direction are repeated until the pressure P is
sufficiently close to P0 with |P − P0|/P0 < 10−4. Additional
details concerning the AQS pure shear algorithm can be found
in our previous studies [25].

We monitor the total potential energy per particle U (γ ) =
U(γ )/N and von Mises stress σ (γ ) as a function of strain γ

during the pure shear deformation. The 3 × 3 stress tensor is
given by

�μδ = 1

V

∑
i>j

fijμrijδ, (1)

where fijμ is the μ = x,y,z component of the pairwise force
�fij that particle j exerts on particle i, and rijδ is the δ = x,y,z

component of the center-to-center distance vector �rij between
particles i and j . The von Mises stress σ is the second invariant
of the stress tensor:

σ =
√

3

2
Tr(��� + PIII )2, (2)

where III is the identity tensor and P = −Tr���/3 is the pressure
[31]. We subtract the residual stress tensor ���(γ = 0) from
���(γ ) so that the von Mises stress σ (γ ) is initialized to zero
at γ = 0.

As described in Sec. I, nonlinearity in ensemble-averaged
quantities, such as 〈U (γ )〉 and 〈σ (γ )〉, is caused by particle
rearrangements and changes to the forms of the piecewise
segments of U (γ ) and σ (γ ) between rearrangements. We
analyze the relative contributions of the two effects by defining

σ (γ ) = σelastic(γ ) − σ r
loss(γ ) − σ s

loss(γ ), (3)
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where σelastic(γ ) is the stress in the absence of losses from
rearrangements and softening, σ r

loss(γ ) is the loss in stress
from particle rearrangements, and σ s

loss(γ ) is the loss in stress
from softening. We define a similar expression for the total
potential energy per particle:

U (γ ) = Uelastic(γ ) − U r
loss(γ ) − U s

loss(γ ), (4)

where Uelastic(γ ) is potential energy in the absence of losses
from rearrangements and softening, and U r

loss(γ ) and U s
loss(γ )

give the potential energy loss from rearrangements and
softening, respectively.

In previous simulation studies of AQS pure shear [25], we
developed a method to unambiguously determine whether a
particle rearrangement event occurs during the strain interval
γ to γ + δγ with an accuracy on the order of numerical
precision. We denote the total number of rearrangements in
the strain interval 0 to γ as Nr (γ ). We calculate the cumulative
rearrangement-induced stress and energy loss after the Nr (γ )
rearrangements in the strain interval 0 to γ as

σ r
loss(γ ) =

Nr (γ )∑
i=1

|�σ (γi)|, (5)

U r
loss(γ ) =

Nr (γ )∑
i=1

|�U (γi)|, (6)

where γi indicates the strains at which rearrangements occur
and �σ (γi) and �U (γi) are the stress and potential energy
drops at each rearrangement, respectively. (See the right inset
of Fig. 1.) We also measure the rearrangement-induced stress
and potential energy losses per strain:

[
dσ r

loss

dγ

]
(γ ) = σ r

loss(γ + dγ ) − σ r
loss(γ )

dγ
, (7)

[
dU r

loss

dγ

]
(γ ) = U r

loss(γ + dγ ) − U r
loss(γ )

dγ
, (8)

using bins of width dγ = 10−2. The stress and potential energy
losses from rearrangements (σ r

loss and U r
loss), as well as the

corresponding losses per strain (dσ r
loss/dγ and dU r

loss/dγ ),
are shown in Fig. 2 for a single configuration prepared
at R = 10−4.

In Fig. 3, we illustrate how we quantify the effect of
softening on σ (γ ) and U (γ ). In Fig. 3(a), we show σ (γ )
for a single configuration as open circles over a small strain
interval. σ (γ ) is nearly linear in regions of strain between the
three stress drops that are indicated by dashed vertical lines.
We define the stress loss per strain from softening as[

dσ s
loss

dγ

]
(γ ) = G0 − G(γ ), (9)

where G0 is the slope of σ (γ ) in the γ = 0 limit [solid black
line in Fig. 3(a)] and G(γ ) is the slope of σ (γ ) at strain γ

[solid blue lines in Fig. 3(a)]. dσ s
loss/dγ is a constant for each

piecewise linear stress-strain segment and is discontinuous at
rearrangements. We also measure the cumulative softening-
induced stress loss for strain up to γ by integrating the
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FIG. 2. Method to quantify the rearrangement-induced stress and
energy losses. (a) The von Mises stress σ and (b) total potential
energy per particle U plotted versus strain γ (solid black curves) for
a single glass configuration prepared at R = 10−4 undergoing AQS
pure shear. The vertical dashed lines indicate the strains at which
rearrangements occur. The rearrangement-induced cumulative stress
loss σ r

loss [Eq. (5)] and potential energy loss U r
loss [Eq. (6)] are shown

by the red dotted curves, with tick marks on the right vertical axis.
The binned rearrangement-induced stress and energy loss per (1%)
strain, dσ r

loss/dγ [Eq. (7)] and dU r
loss/dγ [Eq. (8)], are indicated by

red circles and dashed lines with tick marks on the right vertical axis.
The strain dependence has been binned with width dγ = 0.01; the
edges of each bin are indicated by black arrows in panel (a).

corresponding stress loss per strain:

σ s
loss(γ ) =

∫ γ

0

(
dσ s

loss/dγ ′)dγ ′, (10)

which is continuous, but the slope of the curve changes
discontinuously at each rearrangement.

To quantify the effect of softening on the potential energy
versus strain U (γ ) [Fig. 3(b)], we find the best-fit parabola for
each piecewise elastic segment between rearrangement events
using

U (γ ) = A

2
γ 2 + Bγ + C, (11)

where A, B, and C are coefficients that determine the concavity
and location of the parabola. We define the potential energy
loss per strain from softening as dU s

loss/dγ = k0 − k(γ ),
where k0 and k are the local slopes of U (γ ) at strains 0 and γ ,
respectively. Using Eq. (11), we define the softening-induced
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FIG. 3. Method to quantify the softening-induced stress and
energy losses. (a) The von Mises stress σ and (b) total potential
energy per particle U plotted versus strain γ (open black circles)
for a single glass configuration prepared at R = 10−2 undergoing
AQS pure shear. Three rearrangements (indicated by dashed vertical
lines) occur in the strain interval 0 < γ < 0.014. In (a), the regions
of σ (γ ) between each rearrangement are nearly linear. Best-fit blue
lines are shown for each segment. The solid black line has slope
G0 representing the slope of σ (γ ) near γ = 0. The stress loss per
(1%) strain (dσ s

loss/dγ ) arising from changes in the slope of the
line segments (magenta dotted-dashed curve with tick labels on the
right vertical axis) and the corresponding cumulative stress loss σ s

loss

(magenta dotted curve with tick labels on the right vertical axis) are
also shown. In (b), the regions of U (γ ) between each rearrangement
are parabolic. The best-fit parabolas (blue curves) for each strain
interval are shown. The solid black curve is the best-fit parabola
U0(γ ) for the potential energy near γ = 0. The potential energy loss
per (1%) strain dU s

loss/dγ arising from changes in the local slope
of U (γ ) (magenta dotted-dashed curve with tick marks on the right
vertical axis) and the cumulative potential energy loss U s

loss (magenta
dotted curve with tick marks on the right vertical axis) are also shown.

potential energy loss per strain as

[
dU s

loss

dγ

]
(γ ) = [A0 − A(γ )]γ + B0 − B(γ ), (12)

where the coefficients A0 and B0 are measured at γ =
0. In contrast to dσ s

loss/dγ , which is constant, dU s
loss/dγ

depends linearly on γ for each inter-rearrangement segment.
The cumulative softening-induced potential energy loss can
be calculated by integrating dU s

loss/dγ over a given strain

interval:

U s
loss(γ ) =

∫ γ

0

(
dU s

loss/dγ ′)dγ ′. (13)

U s
loss(γ ) is piecewise quadratic, whereas σ s

loss(γ ) is piecewise
linear.

III. RESULTS

The discussion of the results is organized into three
subsections. First, in Sec. III A, we illustrate the effects
of rearrangements and softening on the ensemble-averaged
stress versus strain curve as a function of the cooling
rate. In particular, we compare the relative contributions of
rearrangements and softening to the nonlinear mechanical
response. In Sec. III B, we identify the distinct contributions
of rearrangements and softening to the loss in potential energy
as a function of strain. In addition, we study the properties
of the parabolic segments of U (γ ) between rearrangements to
characterize the width and height of basins in the PEL near the
yielding transition. In Sec. III C, we investigate the system-size
scaling exponents for the size and frequency of rearrangements
and the distribution of energy drops from rearrangements near
the yielding transition. In addition, we study the stress and
energy losses from rearrangements and softening as a function
of system size.

A. Stress losses from rearrangements and softening

In Fig. 4, we show the von Mises stress versus strain
σ (γ ) for a single glass configuration with N = 2000 prepared

FIG. 4. Rearrangement and softening effects on the von Mises
stress σ for a single glass configuration (with N = 2000 and R =
10−4) undergoing AQS pure shear. σ (γ ) (bottom curve) has nearly
linear continuous segments (blue lines) punctuated by rapid stress
drops caused by particle rearrangements (red lines). The strains at
which the rearrangements occur are indicated by dashed vertical lines.
The middle blue solid curve is obtained by connecting the continuous
segments of σ (γ ) between rearrangements end to end. The stress
σelastic in the absence of rearrangements and softening (top black line)
is obtained from the slope of σ (γ ) in the γ → 0 limit. The cumulative
rearrangement-induced stress loss σ r

loss(γ ) [Eq. (5)] is defined as the
width of the red-shaded region at each strain γ . The cumulative
softening-induced stress loss σ s

loss(γ ) [Eq. (6)] is defined as the width
of the blue-shaded area at each strain γ .
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FIG. 5. Ensemble-averaged (a) rearrangement frequency
〈dNr/dγ 〉, (b) stress loss per rearrangement 〈dσ r

loss/dNr〉, and
(c) rearrangement-induced stress loss per (1%) strain 〈dσ r

loss/dγ 〉
plotted versus strain γ for glasses undergoing AQS pure shear. The
glasses were prepared using cooling rates R = 10−1 (crosses), 10−2

(plus signs), 10−3 (squares), 10−4 (upward triangles), 10−5 (circles),
and 10−6 (downward triangles). All data are obtained by averaging
over 500 independent samples with N = 2000.

at R = 10−4 undergoing AQS pure shear. We identify the
elastic contribution to the stress σelastic(γ ) in the absence
of rearrangements and softening, the stress loss from re-
arrangements σ r

loss(γ ), and the stress loss from softening
σ s

loss(γ ). We find that both σ r
loss(γ ) and σ s

loss(γ ) increase with
strain. For most configurations including this one, the stress
loss from rearrangements is larger than that from softening,
σ r

loss(γ ) > σ s
loss(γ ), and the difference grows with increasing

strain.
The stress loss per strain dσ r

loss/dγ from rearrange-
ments [Eq. (7)] can be decomposed as dσ r

loss/dγ =
(dσ r

loss/dNr )(dNr/dγ ), where dNr/dγ is the rearrangement
frequency (i.e., number of rearrangements per strain) and
dσ r

loss/dNr is the rearrangement size (i.e., stress loss per
rearrangement). In Fig. 5, we show the ensemble average of
all three quantities 〈dNr/dγ 〉, 〈dσ r

loss/dNr〉, and 〈dσ r
loss/dγ 〉

for glasses prepared over a range of cooling rates. We find
that all three increase at small strains (γ � 0.05), plateau at
large strains (γ � 0.1), and form a peak in the intermediate
strain regime (0.05 � γ � 0.1). The peaks are more promi-
nent for 〈dσ r

loss/dNr〉 and 〈dσ r
loss/dγ 〉. At small strains, all

three quantities increase with cooling rate, indicating that
rearrangements play a more significant role in stress loss
in more rapidly cooled glasses. In contrast, at intermediate
strains, all three quantities decrease with increasing cooling
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FIG. 6. Ensemble-averaged (a) softening-induced stress loss per
(1%) strain 〈dσ s

loss/dγ 〉 and (b) local slope of the continuous stress
versus strain segments 〈G(γ )〉 plotted versus strain γ for cooling
rates R = 10−1 (red), 10−2 (orange), 10−3 (yellow), 10−4 (green),
10−5 (cyan), and 10−6 (blue). All data are obtained by averaging over
500 configurations with N = 2000.

rate. In the large strain regime, none of the quantities show
cooling-rate dependence.

In Fig. 6(a), we show the ensemble-averaged softening-
induced stress loss per strain 〈dσ s

loss/dγ 〉 [Eq. (9)]. 〈dσ s
loss/dγ 〉

increases at small strains and plateaus at cooling-rate-
dependent values at large strains. In the intermediate strain
regime, 〈dσ s

loss/dγ 〉 is larger for more slowly cooled glasses
with a pronounced peak. To gain insight into this behavior,
we plot the ensemble-averaged slope of the continuous stress
versus strain segments 〈G(γ )〉 in Fig. 6(b). At γ = 0, the
shear modulus 〈G(0)〉 depends on the degree of heterogeneity
in the material and thus increases with decreasing R [32]. As
γ increases, 〈G(γ )〉 decreases at small strains and reaches a
plateau value (≈40) at large strains that is independent of
cooling rate. In the intermediate strain regime, for slowly
cooled glasses, e.g., R = 10−6, 〈G(γ )〉 first decreases near
γ ≈ 0.04 and reaches a minimum near γ ≈ 0.06 correspond-
ing to the peak in 〈dσ s

loss/dγ 〉. Thus, at small strains, the
slowly cooled glasses are the most rigid, while at intermediate
strains, they are the least rigid. For rapidly cooled glasses,
the nonmonotonic behavior in strain is absent and the shear
modulus 〈G(γ )〉 decreases continuously with strain until it
plateaus in the large-strain limit.

To compare the relative contributions of rearrangements
and softening on the stress loss, we integrate dσ r

loss/dγ and
dσ s

loss/dγ over strain to obtain the cumulative stress losses,
σ r

loss and σ s
loss, respectively. In Fig. 7, we show the ensemble

average of the four variables in Eq. (3), as well as the
direct ensemble average 〈σ (γ )〉 of stress from single glass
configurations, for different cooling rates R. The ensemble-
averaged stress versus strain 〈σ (γ )〉 and the combination of
the terms in Eq. (3), σtotal(γ ), agree quantitatively.

In general, 〈σ r
loss〉 > 〈σ s

loss〉, which means that stress losses
from rearrangements are larger than those from softening.
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FIG. 7. Ensemble-averaged (a) elastic stress σelastic(γ ) (solid),
rearrangement-induced stress loss σ r

loss(γ ) (dashed), and softening-
induced stress loss σ s

loss(γ ) (dotted) plotted versus strain γ . (b)
Ensemble-averaged stress 〈σ (γ )〉 and the stress σtotal obtained by
combining the elastic stress, and the rearrangement- and softening-
induced stress losses [Eq. (3)] plotted versus γ . In both (a) and (b), the
system size N = 2000, and six cooling rates R = 10−1 (red), 10−2

(orange), 10−3 (yellow), 10−4 (green), 10−5 (cyan), and 10−6 (blue)
are shown.

For the sake of discussion, we divide the stress versus strain
curve into three regions: the pre-peak region (γ � 0.04),
the peak region (0.04 � γ � 0.07), and the post-peak region
(γ � 0.07). In the pre-peak region, the stress loss from
softening 〈σ s

loss〉 is extremely small, while the stress loss
from rearrangements 〈σ r

loss〉 is nonzero and increases for
more rapidly cooled glasses. Significant stress loss from
rearrangements in the pre-peak region for rapidly cooled
glasses explains the strongly nonlinear behavior of the stress
versus strain for large cooling rates R. The ability of rapidly
cooled glasses to undergo rearrangements in the pre-peak
strain region is also correlated with enhanced ductility [25]. In
the peak region, the stress loss from softening 〈σ s

loss〉 begins
to grow and becomes comparable to the stress loss from
rearrangements 〈σ r

loss〉. However, 〈σ r
loss〉 and 〈σ s

loss〉 display
opposite cooling-rate dependence. More rapidly cooled glasses
have larger stress loss from rearrangements and smaller stress
loss from softening in the peak region. In contrast, more slowly
cooled glasses possess smaller stress loss from rearrangements
and larger stress loss from softening. In the post-peak region,
both 〈σ r

loss〉 and 〈σ s
loss〉 increase linearly with γ . At large strains,

the stress loss from rearrangements 〈σ r
loss〉 becomes cooling-

rate independent. However, the cooling-rate dependence of the
stress loss from softening 〈σ s

loss〉 increases at large strains. In
this region, 〈σ s

loss〉 increases for more slowly cooled glasses,

0
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FIG. 8. Ensemble-averaged (a) elastic potential energy
〈Uelastic(γ )〉, rearrangement-induced potential energy loss 〈U r

loss(γ )〉,
and softening-induced potential energy loss 〈U s

loss(γ )〉 plotted versus
strain γ . (b) Ensemble-averaged potential energy 〈U (γ )〉 and the
potential energy Utotal(γ ) obtained by combining the elastic energy,
and the rearrangement- and softening-induced energy losses [Eq. (4)]
plotted versus γ for cooling rates R = 10−1 (red), 10−2 (orange),
10−3 (yellow), 10−4 (green), 10−5 (cyan), and 10−6 (blue). All
data are obtained by averaging over 500 samples with system size
N = 2000. The inflection points of 〈U (γ )〉 are indicated by open
circles. Note that 〈U (γ )〉 reaches a cooling-rate-independent plateau
value for γ � 0.2.

which gives rise to the strong decay in 〈σ (γ )〉 at strains beyond
the peak stress (see Fig. 7).

B. Losses in potential energy and geometric features
of basins in the energy landscape

In this section, we will quantify the losses in the potential
energy U from rearrangements and softening during AQS
pure shear deformation. In addition, we will characterize the
geometric features of basins in the potential energy landscape
along the strain direction as a function of the cooling rate R

used to prepare the glasses.
In Fig. 8, we show the ensemble-averaged potential energy

〈U (γ )〉 and compare the potential energy losses from rear-
rangements 〈U r

loss〉 and from softening 〈U s
loss〉 as a function of

strain. By construction, the direct ensemble-averaged potential
energy 〈U (γ )〉 agrees quantitatively with the potential energy
Utotal(γ ) obtained by combining the terms Uelastic(γ ), U r

loss(γ ),
and U s

loss(γ ) from Eq. (4). Near γ = 0, 〈U (γ )〉 is larger for
more rapidly cooled glasses since rapid cooling prevents the
system from exploring configuration space and finding lower
energy minima [10,31]. At small strains, 〈U (γ )〉 increases
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quadratically for all cooling rates (except for R = 10−1) since
the losses from rearrangements and softening are small.

As γ increases, the ensemble-averaged potential energy
〈U (γ )〉 deviates from quadratic behavior due to increases in
losses from rearrangements U r

loss(γ ) and softening U s
loss(γ ).

At large strains, 〈U (γ )〉 approaches a plateau value that
is independent of the cooling rate R [31]. As shown in
Fig. 8(a), the potential energy loss from rearrangements
〈U r

loss(γ )〉 increases with cooling rate for all γ [25]. This
behavior has been associated with the generation of free
volume via shear-induced particle rearrangements [48,50]. To
make contact with these previous studies, we provide a detailed
characterization of changes in local properties (such as the
local density and composition) after rearrangements in the
Appendix. In contrast to the behavior for the stress losses
from rearrangements [Fig. 7(a)], the potential energy loss
from rearrangements 〈U r

loss(γ )〉 is smaller than the potential
energy loss from softening 〈U s

loss(γ )〉. In fact, at large strains,
〈U s

loss(γ )〉 grows more rapidly with strain than 〈U r
loss(γ )〉. The

strain dependence of 〈U s
loss(γ )〉 originates from the evolution

with strain of the geometric features of the PEL {i.e., the γ

dependence of the two terms, [A0 − A(γ )]γ and B0 − B(γ ),
in Eq. (12)}, which will be discussed below.

As shown in Fig. 9(a), the potential energy versus strain
U (γ ) for a single glass configuration is composed of a
series of continuous parabolic segments punctuated by rapid
rearrangement-induced drops. Along the continuous segments
in strain, the system remains in a series of similar minima
in the potential energy landscape. As the strain continues to
increase, the potential energy minimum will become unstable,
the system will undergo a rearrangement and move to a new
minimum. With subsequent increases in strain, the system will
follow a new continuous parabolic segment until that energy
minimum becomes unstable. In Fig. 9(b), we define several
geometric features of the PEL along the strain direction. For
each continuous segment of U (γ ), we find the best-fit parabola
using Eq. (11) with half-width W = B/A + γi , depth D =
U (γi) − C + B2/(2A), and strain location of the minimum
X = −B/A, where γi is the strain at which a rearrangement
occurs (on the large strain side of the continuous segment).

In Fig. 10, we show the ensemble-averaged potential energy
landscape parameters 〈A〉, 〈X〉, and 〈B〉 as a function of strain
γ and cooling rate R. Similar to the ensemble-averaged shear
modulus 〈G〉 in Fig. 6, the concavity 〈A〉 depends weakly on γ

for rapidly cooled glasses. However, 〈A〉 becomes increasingly
nonmonotonic in γ as the cooling rate decreases. In Fig. 10(b),
we show that the strain location of the basin minimum occurs
at 〈X〉 = 0 at γ = 0, and 〈X〉 either increases with γ (for
large R) or decreases with γ (for small R) depending on the
cooling rate. Large deviations from 〈X〉 = 0 are associated
with yielding. For rapidly cooled glasses, there are many
nearby minima in the PEL [61] with similar values of 〈A〉,
〈B〉 < 0, and values of |〈B〉| that increase with strain. Thus,
rapidly cooled glasses possess basins with 〈X〉 that increase
with γ . For more slowly cooled glasses, rearrangements below
yielding are less intense [Fig. 5(c)]. In this case, 〈B〉 changes
signs and 〈A〉 decreases with strain near yielding. As a result,
〈X〉 < 0 for slowly cooled glasses in the strain regime near
yielding. At large γ , 〈X〉 ∼ γ for all cooling rates.
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FIG. 9. (a) Potential energy U versus strain γ for a single
glass configuration (thick black curve) with N = 2000 and prepared
with cooling rate R = 10−2. The best-fit parabolas for each of
the continuous segments of U (γ ) in the range 0 < γ < 0.09 are
shown as thin blue curves. (b) Closeup of U (γ ) in the range
0 < γ < 0.01 indicated by the red rectangle in panel (a). For this
configuration (black circles) and range of strain, two rearrangements
occur (indicated by dashed vertical lines). We show the best-fit
parabola (solid blue curve) for the continuous segment between the
two rearrangements. The half-width W and depth D of the basin
are indicated by the red arrows. The strain location of the minimum
γ = X of the continuous parabolic segment is given by the open
circle.

There are two contributions to the potential energy loss
〈U s

loss〉 from softening. The first contribution, from the integra-
tion of [A0 − A(γ )]γ over strain, is similar to the stress loss
from softening 〈σ s

loss〉. The second contribution stems from the
integration of B0 − B(γ ) over γ . For rapidly cooled glasses,
the second contribution to 〈U s

loss〉 is larger than the first for
all strains. For slowly cooled glasses, when 〈B(γ )〉 becomes
sufficiently positive near yielding [inset to Fig. 10(b)], the
second contribution can switch from positive to negative,
providing an effective potential energy gain. However, for
slowly cooled glasses, the potential energy loss from the first
contribution is much larger than the effective gain, and thus
〈U s

loss(γ )〉 also grows with γ for slowly cooled glasses as
shown in Fig. 8(a).

We now focus on the strain and cooling-rate dependence of
the half-width W and depth D of the basins that are sampled in
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FIG. 10. Ensemble-averaged features of the PEL along the strain
direction. We plot (a) the concavity 〈A〉 and (b) strain location of the
potential energy minimum 〈X〉 for the continuous segments versus γ .
In the inset, we also include 〈B〉 versus γ for the continuous segments.
For all data, we show six cooling rates, R = 10−1 (crosses), 10−2

(plus signs), 10−3 (squares), 10−4 (upward triangles), 10−5 (circles),
and 10−6 (downward triangles), and average over 500 samples with
N = 2000.

the PEL along the strain direction during AQS pure shear. As
shown in Figs. 11(a) and 11(b), the ensemble-averaged 〈W 〉
and 〈D〉 possess similar dependence on strain and cooling
rate. 〈W 〉 = 〈D〉 = 0 at γ = 0 and then both increase with γ

for small strains. As γ continues to increase, 〈W 〉 and 〈D〉
become cooling-rate dependent. For rapidly cooled glasses,
〈W 〉 and 〈D〉 grow monotonically with strain, reaching plateau
values (〈W 〉 ∼ 0.03 and 〈D〉 ∼ 0.02) in the large-strain limit.
In contrast, for slowly cooled glasses, 〈W 〉 and 〈D〉 form peaks
near γ ∗ ∼ 0.055 before reaching their large-strain plateau
values. The values of γ ∗ for slowly cooled glasses are similar
to those for the peak locations of the von Mises stress 〈σ (γ )〉
[Fig. 7(b)], which indicates that as the strain increases above
yielding, the basin geometries change dramatically.

In Fig. 11(c), we show a scatter plot of D versus W

for all of the continuous parabolic segments in U (γ ) in
the range 0 < γ < 0.12. We find that more slowly cooled
glasses sample basins with larger depths and half-widths D

and W , as shown in the upper-left inset to Fig. 11(c). At
small strains, and for all cooling rates, the half-width of the
basins scales quadratically with the depth W ∼ D2 [39]. In
contrast, W ∼ Dλ with λ ∼ 1.5 at large strains near and above
yielding, which signifies that the dynamics has transitioned
from intrametabasin to intermetabasin sampling [8,62]. [See
the lower right inset to Fig. 11(c).] Recent studies of unsheared,
finite-temperature glasses have also shown that the basin
widths and depths are larger for more slowly cooled glasses.
However, these studies also showed that the basin curvature
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FIG. 11. Ensemble average of (a) the half-width 〈W 〉 and (b)
depth 〈D〉 of the continuous segments of the potential energy
U (γ ) versus the midpoint strain for each segment for cooling rates
R = 10−1 (crosses), 10−2 (plus signs), 10−3 (squares), 10−4 (upward
triangles), 10−5 (circles), and 10−6 (downward triangles). The strains
γ ∗ at which 〈W 〉 and 〈D〉 form a peak are indicated by dotted
lines for those cooling rates R where a peak is clearly visible.
(c) Scatter plot of D versus W for all continuous segments in the
strain interval 0 < γ < 0.12 for R = 10−2 (orange) and 10−5 (cyan).
The solid and dashed lines have slopes 2 and 1.5, respectively.
The upper-left inset shows D versus W on a linear-linear scale for
R = 10−2 (orange) and 10−5 (cyan), and the lower-right inset shows
D versus W on a log10 - log10 scale for R = 10−5. Data near yielding
(0.045 < γ < 0.065) are colored magenta.

is independent of cooling rate, which differs from the results
presented in Fig. 10(a) for glasses undergoing AQS pure shear.
Thus, thermal fluctuating systems and glasses undergoing AQS
pure shear sample basins with different geometric properties.
In summary, we have shown that the geometric properties
of basins in the potential energy landscape vary strongly
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FIG. 12. The ensemble-averaged (a) von Mises stress 〈σ 〉 and (b)
potential energy per particle 〈U〉 versus strain γ for systems prepared
at cooling rate R = 10−5 and several system sizes: N = 250 (black),
500 (brown), 1000 (red), 2000 (orange), and 4000 (yellow). 〈σ 〉 and
〈U〉 were averaged over at least 500 independent samples.

near yielding and depend strongly on cooling rate for glasses
undergoing AQS pure shear.

C. Yielding transition

In this section, we analyze the system-size dependence
of the stress and energy losses from rearrangements and
softening. Prior studies have shown that quantities, such as
the average energy drop and participation number during
rearrangements, scale sublinearly with system size in glasses
undergoing AQS shear [12,63]. Other work has shown that
changes in the scaling of the rearrangement statistics with
system size are associated with the yielding transition [13,17].

First, note that macroscale quantities, such as the ensemble-
averaged stress σ (γ ) and potential energy per particle U (γ ),
are largely independent of system size for N � 500, as shown
in Fig. 12. (We discuss the correlation between fluctuations
in the local structural quantities, such as the density and
composition, and particle rearrangements in the Appendix.)
In Fig 13, we show the system-size dependence of the
rearrangement-induced stress loss per strain 〈dσ r

loss(γ )/dγ 〉
and energy loss per strain 〈dU r

loss(γ )/dγ 〉. For N � 1000,
〈dσ r

loss(γ )/dγ 〉 and 〈dU r
loss(γ )/dγ 〉 are nearly independent of

system size at small and large strains. However, at strains
near the yield strain γy ∼ 0.055, both 〈dσ r

loss(γ )/dγ 〉 and
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FIG. 13. The ensemble-averaged (a) rearrangement-induced
stress loss per (1%) strain 〈dσ r

loss/dγ 〉 and (b) rearrangement-induced
energy loss per (1%) strain 〈dU r

loss/dγ 〉 plotted versus strain γ for
glasses prepared at cooling rate R = 10−5 and several system sizes:
N = 250 (crosses), 500 (squares), 1000 (upward triangles), 2000
(circles), and 4000 (downward triangles). All data points are obtained
by averaging over at least 500 independent samples.

〈dU r
loss(γ )/dγ 〉 display sharper increases with strain as N

increases. For slowly cooled glasses, 〈dσ r
loss(γ )/dγ 〉 forms

a peak near yielding [cf. Fig. 5(c)], which persists as the
system size increases. In contrast, 〈dU r

loss(γ )/dγ 〉 does not
possess a peak and instead displays a sigmoidal form for
all cooling rates [25]. The slope of 〈dU r

loss(γ )/dγ 〉 near the
midpoint of the sigmoid sharpens with increasing N , but
appears to reach a (cooling-rate-dependent) finite value in
large systems. The slope of 〈dU r

loss/dγ 〉 (near the midpoint)
for large systems grows with decreasing cooling rate [see
Fig. 16(a)]. The rapid increase in the slope of 〈dU r

loss/dγ 〉
signals a significant acceleration of rearrangements and energy
loss near the yielding transition.

As described in Sec. III A for σ r
loss, we can also decom-

pose dU r
loss(γ )/dγ into two contributions that give the size

dU r
loss(γ )/dNr and frequency dNr/dγ of rearrangements.

In Fig. 14, we show the system-size dependence of the
ensemble average of these two quantities. As N increases,
the rearrangement size decreases and the frequency increases.
Previous studies [12,13,53] have focused on the system-size
scaling of similar quantities: (1) the strain interval �γ ∼
(dNr/dγ )−1 between rearrangements and (2) the total energy
loss per rearrangement �U ∼ NdU r

loss/dNr .
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FIG. 14. The ensemble-averaged (a) rearrangement frequency
〈dNr/dγ 〉 and (b) energy loss per rearrangement 〈dU r

loss/dNr〉 plotted
versus strain γ for glasses prepared with cooling rate R = 10−2 and
several system sizes: N = 250 (crosses), 500 (squares), 1000 (upward
triangles), 2000 (circles), and 4000 (downward triangles). All data
points are obtained by averaging over at least 500 samples.

The ensemble-averaged size and frequency of rearrange-
ments display power-law scaling with system size:

〈
dU r

loss/dNr

〉 ∼ Nα(γ ), (14)

〈dNr/dγ 〉 ∼ N−β(γ ), (15)

where the scaling exponents α(γ ) and β(γ ) are functions of
strain γ and cooling rate R. In Fig. 15(a), we compare our
results for −[1 + 1/β(γ )] with those from Ref. [13] for several
cooling rates. Reference [13] provided theoretical arguments
for the strain dependence of −[1 + 1/β(γ )]. They argued that
−[1 + 1/β(γ )] should jump from a nonzero, nonuniversal
value (≈0.6 for binary Lennard-Jones glasses) at γ = 0 to 0
when γ > 0, then jump discontinuously from zero to a nonzero
value at the yield strain γy , and remain at a universal value 0.5
as the strain increases beyond γy . As shown in Fig. 15(a),
our data are qualitatively similar to the data for Ref. [13]. In
particular, −[1 + 1/β(γ )] decreases from a maximal value at
γ = 0, remains roughly constant and small over a narrow strain
interval below the yield strain, and then begins to increase
beyond the yield strain, approaching a plateau value near 0.5
at large strains.

The data in Fig. 15(a) suggest that −(1 + 1/β) decreases
with decreasing cooling rate in the range 0.04 < γ < 0.07,
but it does not depend strongly on the cooling rate at
large strains. Much larger ensemble averages should be
performed to confirm these results. Using Eqs. (14) and
(15), the rearrangement-induced energy loss per strain obeys
〈dU r

loss/dγ 〉 ∼ Nα(γ )−β(γ ). In Fig. 15(b), we show that the
difference in the scaling exponents α(γ ) − β(γ ) ∼ 0 at small
and large strains, while α(γ ) − β(γ ) > 0 near the yield strain.
A positive value for α(γ ) − β(γ ) indicates that 〈dU r

loss/dγ 〉
can serve as an order parameter for the yielding transition. The
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FIG. 15. (a) The quantity −[1 + 1/β(γ )] plotted as a function
of strain γ and two cooling rates, R = 10−2 (crosses) and 10−5

(circles), where the rearrangement frequency 〈dNr/dγ 〉 scales as
a power law with system size with exponent β: 〈dNr/dγ 〉 ∼ N−β .
We also show data for −(1 + 1/β) from Hentschel et al. [13] (dashed
curves) with “infinitely fast” (rightward triangles) and slow R = 10−5

(leftward triangles) cooling rates. The theoretical prediction for
(−1 + 1/β) from Hentschel et al. [13], which is indicated by the
black dashed line, has an abrupt increase at the yielding transition.
(b) The difference between the scaling exponents α(γ ) − β(γ ) is
plotted as a function of strain γ for cooling rates R = 10−2 (crosses),
10−3 (squares), 10−4 (triangles), and 10−5 (circles). α(γ ) is the
system-size scaling exponent for the energy loss per rearrangement:
〈dU r

loss/dNr〉 ∼ Nα(γ ).

data for α(γ ) − β(γ ) for rapidly cooled glasses with R = 10−2

differ from that for more slowly cooled glasses. The stress
〈σ (γ )〉 and stress loss from rearrangements 〈dσ r

loss/dγ 〉 do
not possess peaks for rapidly cooled glasses and, in this case,
the yield transition behaves as a smooth crossover [13].

In Fig. 16(b), we plot several characteristic strains
{inflection points in 〈U (γ )〉 [Fig. 8(b)] and 〈dU r

loss/dγ 〉
[Fig. 16(a)] and the peak locations of the half-width 〈W 〉 and
depth 〈D〉 [Figs. 11(a) and 11(b)] of the basins in the PEL},
which are correlated with the yielding transition, as a function
of cooling rate. At low cooling rates, these measures approach
γ ∗ ≈ 0.055. As the cooling rate increases, these characteristic
strains decrease. In particular, the measures of the inflection
points tend to zero near Rc ≈ 10−1. Note that 〈W 〉 and 〈D〉 do
not possess peaks for cooling rates R > 10−3, and thus these
data points are not plotted.

The above results for the rearrangement-induced energy
drops were obtained by ensemble averaging over many inde-
pendent samples at each strain and cooling rate. We will now
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FIG. 16. (a) The ensemble-averaged rearrangement-induced en-
ergy loss per (1%) strain 〈dU r

loss/dγ 〉 plotted versus strain γ for
glasses with N = 2000 and prepared at several cooling rates: R =
10−1 (crosses), 10−2 (plus signs), 10−3 (squares), 10−4 (upward
triangles), 10−5 (circles), and 10−6 (downward triangles). 〈dU r

loss/dγ 〉
is obtained by averaging over 500 independent samples. The solid
curves are the best-fit logistic functions for each R. (b) Several
characteristic strains γ ∗ plotted versus cooling rate R for glasses
with N = 2000. We plot the inflection points for the potential energy
〈U (γ )〉 (circles) multiplied by ≈1.3 and potential energy loss per
strain 〈dU r

loss/dγ 〉 (upward triangles) and the location of the peaks in
the half-width 〈W 〉 (squares) and depth 〈D〉 (downward triangles) of
basins in the potential energy landscape for small R.

consider the distribution of energy drops as a function of strain
and cooling rate. There have been a number of prior studies
of the distribution of rearrangements, spanning length scales
from avalanches in earthquakes and other geophysical flows
[64,65], particle rearrangements in driven granular matter
[66], serrated flows in bulk metallic glasses (BMGs) [67],
and thermally activated particle rearrangements in amorphous
alloys [40]. The distribution of energy drops can display
power-law scaling or exponential decay depending on the
temperature and whether the driving is inertial or overdamped
[40,68–70]. For amorphous systems with AQS driving, the
form of the distribution of energy drops is typically exponential
[43,53,63].

In contrast to prior studies, we will characterize the form
of the probability distribution P (�U ) of energy drops �U

for each rearrangement both before and after the yielding

ΔU
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FIG. 17. The probability distribution P (�U ) of energy drops
(a) before (γ < 0.055) and (b) after yielding (0.055 < γ < 0.12)
for glasses with N = 2000 and prepared at cooling rates R = 10−1

(crosses), 10−2 (plus signs), 10−3 (squares), 10−4 (upward triangles),
10−5 (circles), and 10−6 (downward triangles). The distributions have
been normalized such that

∫
P (�U )d�U = 1. The distributions

decay exponentially P (�U ) ∼ exp(−κ�U ) for all R above and
below the yielding transition. The dashed lines give least-square
linear fits for each R. (c) The coefficient κ of the exponential decay
of P (�U ) versus strain for the same cooling rates in (a) and (b).
The inset shows the scaled coefficient κ̃ of the exponential decay
versus γ .

transition. In Fig. 17, we show P (�U ) from rearrangements
before yielding [γ < 0.055 in Fig. 17(a)] and after yielding
[γ > 0.055 in Fig. 17(b)]. Both before and after yielding, the
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FIG. 18. The ensemble-averaged local slope of the continuous
stress versus strain segments 〈G(γ )〉 plotted versus strain γ for glasses
prepared with cooling rate R = 10−5 (solid curves) and several system
sizes: N = 250 (black), 500 (brown), 1000 (red), 2000 (orange solid
curve), and 4000 (yellow). 〈G(γ )〉 for rapidly cooled glasses with
R = 10−1 and N = 2000 is shown for comparison (dashed curve).
All data have been averaged over at least 500 samples.

probability distribution decays exponentially:

P (�U ) = 1

κ
exp(−κ�U ), (16)

where κ is a function of both strain γ and cooling rate R. Before
the yielding transition, κ depends strongly on cooling rate, i.e.,
κ increases as the cooling rate decreases. Slowly cooled glasses
have a relatively low probability for rearrangements with large
�U before yielding. After yielding, the distribution of energy
drops is only weakly dependent on cooling rate. In Fig. 17(c),
we plot the coefficient κ of the exponential decay of the energy
drop distribution P (�U ) as a function of strain γ for several
cooling rates R. For more slowly cooled glasses, there is a more
rapid decrease in κ before yielding. After yielding, κ � 100 is
independent of γ and R and similar to values found in related
studies of rearrangements in sheared binary Lennard-Jones
glasses [43,53]. The behavior of the energy scale 1/κ mirrors
the behavior of the average potential energy 〈U (γ )〉 [Fig. 8(b)].
We find that κ̃ = κ[a〈U (γ )〉 + u] ∼ 1, where a ≈ 0.1 is a
constant, and u/〈U 〉 � 1 and does not depend on γ or R. In
the inset to Fig. 17(c), we show κ̃ as a function of γ and R.

We also studied the system-size dependence of the
softening-induced stress and energy losses. The softening-
induced stress loss per strain 〈dσ s

loss(γ )/dγ 〉 is caused by
decreases in the local slopes of the continuous stress versus
strain segments (see Fig. 6). As the system size increases, the
frequency of rearrangements increases [as shown in Fig. 14(a)]
and the lengths of the continuous stress versus strain segments
shorten. Here, we investigate whether the local slopes of the
continuous stress versus strain segments change significantly
with system size.

In Fig. 18, we show 〈G(γ )〉 for a slowly cooled glass
(R = 10−5) as a function of system size from N = 250 to
4000. 〈G(γ )〉 is nearly independent of system size at strains
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FIG. 19. The ensemble-averaged softening-induced (a) stress loss
per (1%) strain 〈dσ s

loss/dγ 〉 and (b) energy loss per (1%) strain
〈dU s

loss/dγ 〉 for a slow cooling rate R = 10−5 and several system
sizes: N = 250 (black), 500 (brown), 1000 (red), 2000 (orange), and
4000 (yellow). 〈dσ s

loss/dγ 〉 and 〈dU s
loss/dγ 〉 were averaged over at

least 500 independent samples.

prior to yielding γ � 0.055. In contrast, at large strains above
yielding, 〈G(γ )〉 grows (and 〈dσ s

loss/dγ 〉 decreases) with N .
We see that for the larger system sizes (N > 1000) 〈G(γ )〉
begins to saturate. For comparison, we show 〈G(γ )〉 for a glass
prepared at the highest cooling rate studied, R = 10−1. At
these cooling rates, 〈σ (γ )〉 reaches a large-strain plateau value
that is only weakly system-size dependent. In Fig. 19, we show
the system-size dependence of the softening-induced stress
〈dσ s

loss(γ )/dγ 〉 and energy 〈dU s
loss(γ )/dγ 〉 loss per strain.

Both quantities saturate for large systems, with forms that are
qualitatively the same as those for smaller system sizes. Thus,
softening-induced losses appear to persist in the large-system
limit.

In this section, we presented results for the system-size
dependence of the rearrangement- and softening-induced
stress and energy losses from AQS pure shear as a function of
strain and cooling rate. Several quantities (both rearrangement-
and softening-induced losses) show strong system-size de-
pendence near yielding, which serves to identify the onset
of the transition from a solidlike to a flowing state. For
example, the potential energy loss per strain 〈dU r

loss/dγ 〉
from rearrangements shows a sigmoidal form that becomes
increasingly sharp in large systems and the stress loss per
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strain 〈dσ s
loss/dγ 〉 from softening shows significant system-

size dependence above yielding, but not below.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we characterized the nonlinear mechanical
response of binary Lennard-Jones glasses subjected to AQS
pure shear. We performed comprehensive numerical simula-
tions as a function of strain γ above and below the yielding
transition, cooling rates R used to prepare the zero-temperature
glasses over five orders of magnitude, and system sizes ranging
from N = 250 to 4000.

To investigate the mechanical response, we focused on
global quantities, such as the von Mises stress σ and total
potential energy per particle U . Although it is hidden when
taking an ensemble average, σ (γ ) and U (γ ) for each single
glass configuration are composed of continuous segments in
strain punctuated by rapid drops in either stress or energy
caused by particle rearrangements. Thus, deviations (losses
for the cooling rates considered here) in the stress or potential
energy from elastic behavior originate from two sources: (1)
softening-induced losses from changes in the form of the
continuous segments in strain and (2) rearrangement-induced
losses that depend on the frequency and size of the energy or
stress drops. A key feature of this study is that we decomposed
the total stress and energy losses into contributions from both
sources.

In general, both softening- and rearrangement-induced
losses are small well below the yield strain, and then they begin
to increase rapidly near yielding. Near and above yielding,
both types of losses contribute to the nonlinear mechanical
response and remain finite as the system size increases. In the
range of cooling rates studied here, rearrangement-induced
stress losses are larger than softening-induced stress losses.
However, the softening-induced stress losses increase with
decreasing cooling rate [Fig. 7(a)], and thus softening-induced
stress losses can dominate the nonlinear mechanical response
at sufficiently small cooling rates.

In many cases, the yield strain, where sheared glasses
transition from a disordered solid into a flowing state, is
difficult to pinpoint because many physical quantities, such
as the shear stress and potential energy, vary smoothly with
strain [55]. Here, we identified several quantities that show
significant changes as the strain is increased above yielding.
First, geometric features (i.e., the half-width W and depth
D) of basins in the PEL along the strain direction develop
peaks near the yield strain for slowly cooled glasses. In
addition, the scaling relation between the half-width and
depth D ∼ Wλ changes from a scaling exponent of λ = 2
below yielding to 1.5 above yielding for all cooling rates
studied. Second, the rearrangement-induced energy loss per
strain 〈dU r

loss/dγ 〉 possesses a sigmoidal form with a slope
near the yield strain that becomes sharper as the cooling rate
decreases and system size increases. Further, we decomposed
the rearrangement-induced energy loss per strain 〈dU r

loss/dγ 〉
into two terms that determine the size and frequency of
rearrangements, and showed that the system-size scaling of
these two terms changes near the yielding transition [13].
Third, as found previously, the distribution of energy drops
decays exponentially for AQS sheared glasses over the full

range of strain [43,53,63]. However, the energy scale of the
exponential decay depends strongly on the cooling rate below
yielding, while it is cooling-rate independent above yielding.

In future studies, we will investigate several new directions
related to the mechanical properties of glasses. In this article,
we focused on glasses that were prepared by cooling them to
zero temperature at different rates. However, glasses can also
be prepared by cooling them to a nonzero value TA below
the glass transition temperature and aging the system (i.e.,
maintaining a fixed TA for a given amount of time tA). Both
TA and tA can affect the mechanical properties of BMGs.
Previous studies have found that when the aging temperature
is near but below the glass transition temperature TA � Tg , the
free volume of the system decreases and glasses can become
brittle [26,71,72]. In addition, the impact toughness decreases
with increasing aging time and temperature [73]. In our future
computational studies, we will disentangle the separate effects
of particle rearrangements and softening on the mechanical
response of glasses for different aging protocols.

Second, the current computational studies were performed
using AQS pure shear [43]. How will the results we presented
change when we consider glasses sheared at finite shear rate
γ̇ and temperature T ? Suppose the time scale for structural
relaxation from thermal fluctuations is given by τ . In the case
γ̇ τ � 1, we expect similar results to those presented here.
As the temperature increases, the system will sample higher
regions of the PEL than sampled at zero temperature. The
frequency of particle rearrangements will increase for T > 0 as
rearrangements become thermally activated instead of strain-
induced mechanical instabilities [74,75]. In future studies, we
will analyze the rearrangement- and softening-induced losses
at finite temperate and strain rate to determine their effects
on the stress versus strain curve [52,76], yield strain [8], and
ductility [77].

The computational studies presented here were also per-
formed using strain control. In contrast, many experiments
probe the mechanical response of glasses by performing creep
studies at fixed applied shear stress [67–69]. For computational
studies at fixed shear stress, the system will flow until it
finds a glass configuration with a shear stress that matches
the applied shear stress [78,79]. If the system cannot find
a configuration that can balance the applied shear stress, the
system will flow indefinitely with a well-defined average shear
rate. In future studies, we will compare the rearrangement- and
softening-induced stress and energy losses in the fixed shear
stress, fixed strain, and fixed strain-rate ensembles.

In previous computational studies, we showed that sheared
frictionless granular materials, which interact via purely
repulsive interactions, possess monotonic stress versus strain
curves even for “slowly cooled” granular samples [80]. Based
on our current results for rapidly cooled binary Lennard-
Jones glasses, we expect that the stress and potential energy
losses in frictionless granular materials are dominated by
rearrangement-induced losses. In future studies, we will
determine the relative contributions of rearrangement- and
softening-induced stress and energy losses as a function of
the strength and range of the attractive interactions in the
interatomic potential. In particular, recent studies [81,82]
have shown that the form of the interaction potential can
influence the ductility of amorphous alloys, and thus we will
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investigate the relative contributions of rearrangement- and
softening-induced losses in ductile versus brittle glasses.
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APPENDIX: FLUCTUATIONS IN LOCAL DENSITY,
COMPOSITION, AND PARTICLE CONTACTS

FROM REARRANGEMENTS

In the main text, we focused on the global mechanical
response [〈σ (γ )〉 and 〈U (γ )〉] of zero-temperature binary
Lennard-Jones glasses to AQS shear. There have been several
prior studies that have attempted to connect particle rear-
rangements during shear to local properties of the glass. For
example, studies have shown that more loosely packed glasses
with reduced short- to medium-range structural order are more
prone to particle rearrangements and energy loss during shear
[83]. Other studies have identified shear transformation zones
by correlating soft modes from the density of vibrational
modes with regions of the system with low local yield
stress or elevated free volume [48,50]. In this appendix,
we relate our work to these prior studies by quantifying
the fluctuations in local structural quantities (such as the
density, composition, and interparticle contacts) following
shear-induced rearrangements.

Since the systems are sheared at fixed pressure, the global
number density ρ varies with strain. In Fig. 20, we plot the
density as a function of pure shear strain for several cooling
rates. At zero strain, the density is smaller for more rapidly
cooled glasses (with more free volume). Furthermore, as
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FIG. 20. Reduced number density ρ = Nσ 3
AA/V of binary

Lennard-Jones glasses containing N = 2000 particles prepared using
cooling rates R = 10−2 (orange), R = 10−3 (yellow), R = 10−4

(green), and R = 10−5 (cyan). These systems undergo AQS pure
shear at constant pressure P = 10−8 as a function of strain γ . Each
curve is averaged over 500 independent samples.

0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FIG. 21. The probability distribution of local density P (ρi
local) for

each particle i of large particles (black curves) and small particles
(red curves), which are either mobile (solid curves) or nonmobile
(dashed curves) during rearrangements, in binary Lennard-Jones
glasses prepared using cooling rate R = 10−6 undergoing AQS pure
shear from strain γ = 0 to 0.12. Data for P (ρi

local) are collected before
each rearrangement event and include 10 336 rearrangements in 200
independent samples.

strain increases, the density decreases for systems prepared
at all cooling rates considered, since more free volume is
generated during shear. The overall decrease in density is
smaller for the more rapidly cooled glasses since they are
already loosely packed at zero strain. We also find that
the Poisson’s ratio ν increases with cooling rate (indicating
enhanced ductility at higher cooling rates), but remains
0 < ν < 0.5 [25].

We identify mobile and nonmobile particles in each
rearrangement event by calculating the participation number
P [41]. We identify the P particles with largest displacements
as the mobile particles and the other N − P particles as
the nonmobile particles. We quantify the local properties
of the system (i.e., density, composition, and interparticle
contacts) of mobile and nonmobile particles at strain γr − δγ

immediately before a rearrangement event at γr . We perform
Voronoi tessellation at strain γr − δγ to determine the local
particle density and the neighbors of each particle before the
rearrangement. We define the normalized local density for
particle i as ρi

local = πr3/6V i
local, where r is the interparticle

separation at which the force on given particle and its neighbors
is zero and V i

local is the volume of the Voronoi cell for particle
i. The probability distribution P (ρi

local) over a range of pure
shear strain γ = 0 to 0.12 is shown in Fig. 21. We find that
the peak in P (ρi

local) for mobile particles is smaller than that
for nonmobile particles, for both large and small particles.
These results are consistent with prior studies that state that
shear transformation zones possess excess free volume and are
more loosely packed.

We also quantified the composition of large and small
particles in the mobile and nonmobile regions of the system for
each rearrangement. In Fig. 22, we show that the proportion
of large mobile particles is less than the homogeneous value
(80%), while the proportion of small mobile particles is more
than the homogeneous value (20%). Thus, small particles
are more likely than large particles to participate in particle
rearrangements.
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FIG. 22. The number of (a) large particles PL and (b) small
particles PS plotted versus the participation number P . Each dot
represents a single rearrangement event in 200 independent binary
Lennard-Jones glasses prepared using cooling rate R = 10−6 (blue
dots) and R = 10−1 (red dots) undergoing AQS pure shear from
strain γ = 0 to 0.12. The solid lines have slopes 0.8 and 0.2 in
(a) and (b), respectively, which represent the homogeneous particle
compositions.

In addition, we measured the fractions of interparticle
contacts [large-large (LL), large-small (LS), and small-small
(SS)] for mobile and nonmobile particles during rearrange-
ments. In Fig. 23, we show that mobile particles possess more
small-small and large-small contacts than nonmobile particles,
and less large-large contacts than nonmobile particles. This
result is consistent with those shown in Fig. 22 since it shows
that there are more small mobile particles and less large mobile
particles than the homogeneous values. Our results for the
local density and composition fluctuations are very weakly
dependent on the cooling rate used to prepare the glasses and
the total strain.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6
(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(b)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1
(c)

FIG. 23. Distribution of the fractions of (a) large-large NLL/Ntotal,
(b) large-small NLS/Ntotal, and (c) small-small NSS/Ntotal contacts
for mobile (solid curves) and nonmobile (dashed curves) particles
during rearrangements for binary Lennard-Jones glasses prepared
using cooling rate R = 10−6 and subjected to athermal, quasistatic
pure shear from strain γ = 0 to 0.12. Note that Ntotal = NLL + NLS +
NSS. Data for the fraction of large-large, large-small, and small-small
contacts are collected before each of the 10 336 rearrangement events
from 200 independent samples.
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