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Onset and cessation of motion in hydrodynamically sheared granular beds
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We performed molecular dynamics simulations of granular beds driven by a model hydrodynamic shear flow
to elucidate general grain-scale mechanisms that determine the onset and cessation of sediment transport. By
varying the Shields number (the nondimensional shear stress at the top of the bed) and particle Reynolds number
(the ratio of particle inertia to viscous damping), we explore how variations of the fluid flow rate, particle inertia,
and fluid viscosity affect the onset and cessation of bed motion. For low to moderate particle Reynolds numbers, a
critical boundary separates mobile and static states. Transition times between these states diverge as this boundary
is approached both from above and below. At high particle Reynolds number, inertial effects become dominant,
and particle motion can be sustained well below flow rates at which mobilization of a static bed occurs. We also
find that the onset of bed motion (for both low and high particle Reynolds numbers) is described by Weibullian
weakest-link statistics and thus is crucially dependent on the packing structure of the granular bed, even deep
beneath the surface.
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I. INTRODUCTION

Fluid flowing laterally over a granular bed exerts shear
stress on the grains. This occurs in many natural settings and
industrial applications, such as sediment transport in riverbeds
[1,2] and slurries pipes [3,4]. The ratio of the shear stress
exerted by the fluid on the top of the bed to the buoyancy-
corrected particle weight is known as the Shields number �

[5]. For small �, no grain motion occurs; at sufficiently large
�, however, grains can be entrained by the flow [6–15]. Despite
decades of research, the nature of the transition between
static and mobilized granular beds is not well understood.
The geometric structure of the contact network in the bed
determines its mechanical strength [16–18]. Bed mobilization
is also strongly affected by the complex and unsteady fluid flow
above the bed, as well as how strongly the fluid flow couples to
the grains, as quantified by the particle Reynolds number Rep

[5,7,10,11], which measures how quickly grains equilibrate to
the fluid flow. Weak stresses applied to the interior of the bed by
fluid flowing through the pore spaces between grains may also
play a role in bed mobilization [19–21]. Although empirical
hydraulic models capture some important aspects of sediment
transport problems [8], there is at present no fundamental
understanding of the relative contributions of these effects on
the onset and cessation of grain motion.

In this paper, we study a simplified model of a fluid-driven
granular bed to clarify the essential physics at the onset of
bed motion. In particular, we seek to understand the nature
of the mobile-to-static and static-to-mobile transitions as a
function of � and Rep and to predict the parameter regime
where hysteresis, defined as a finite difference between �0,
above which a static bed will begin to move, and �c, below
which a mobile system will come to rest, occurs.

We performed molecular dynamics (MD) simulations of a
two-dimensional (2D) system composed of frictionless disks
subjected to a simplified fluid flow that decays from a large

value above the bed to a small value inside the bed. Although
our model is highly simplified, with, for example, no explicit
unsteadiness in the flow or friction between the grains, we
find that �c(Rep) from the simulations is consistent with the
behavior obtained from a large collection of experiments on
sediment transport [7,10,11]. In particular, we find plateau
values �l

c and �h
c at low and high Rep, with �l

c > �h
c , and

an intermediate Rep regime that connects the two limiting
values. In the low Rep limit, there is a sharp transition at
�c between mobile and static beds in the infinite-time and
infinite-system-size limits with no hysteresis. In the large Rep

limit, we find significant hysteresis, since particle inertia can
sustain motion well below the �0 at which bed motion is
initiated. We also find that the onset of bed motion at � > �c

for low Rep and � > �0 for high Rep depends strongly on
system size and exhibits weakest-link statistics [22,23]. Thus,
the onset of bed motion in our system depends on the bed
packing structure, even deep beneath the surface.

II. DETAILS OF THE MODEL

We study a domain of width W that contains N/2 large and
N/2 small disks with diameter ratio 1.4. There is no upper
boundary, and the lower boundary is rigid with infinite friction
so that the horizontal velocities of all particles touching it
are set to zero. We use periodic boundary conditions in the
horizontal direction. The total force on each particle is given
by the vector sum of contact forces from other particles, a
gravitational force, and a Stokes-drag-like force from a fluid
that moves horizontally:

mi �ai =
∑

j

�Fc
ij − mig

′ŷ + Bi[v0f (�r)x̂ − �vi]. (1)

Here, mi ∝ D2
i is the particle mass, Di is the diameter of

particle i, �vi and �ai are the velocity and acceleration of particle
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FIG. 1. (Color online) Layer-averaged fluid velocity vf versus
depth for static (a) and mobile (b) beds. Grains are subjected to a
fluid drag force and a gravitational force −mg′ŷ. The gray circle (a)
defines the area used to calculate the local packing fraction φi near
the ith particle, which determines the local fluid velocity. We also
show the layer-averaged grain velocity vg for a mobile bed in (b).

i, mig
′ is the buoyancy-corrected particle weight, Bi ∝ Di sets

the drag on disk i, v0 is a characteristic fluid velocity at the
surface of a static bed, and f (�r) is the fluid velocity at �r . �Fc

ij =
K(1 − rij

Dij
)θ (1 − rij

Dij
)r̂ij is the pairwise repulsive contact force

on disk i from disk j , where K is the particle stiffness, rij

is the separation between the centers of the particles, Dij =
(Di + Dj )/2, r̂ij is the unit vector connecting their centers,
and θ is the Heaviside step function. f (�r), the fluid velocity
profile, varies smoothly from a large value above the bed to a
small value inside the bed. We choose a form that depends only
on the local packing fraction φi : f (φi) = e−b(φi−0.5), where b

controls the ratio of the magnitude of the fluid flow above
and inside the bed. φi is calculated in a small circular region
with diameter Di + 2Dl around each particle, as shown in
Fig. 1(a). We note that f = 1 for φi = 0.5, a typical value at
the bed surface. See Sec. III A for force profiles in static and
mobile states.

Three nondimensional numbers govern the behavior of
Eq. (1). We set the nondimensional stiffness K

mg′ > 3 × 103

to be sufficiently large that increasing it has no effect on
our results. The other two nondimensional parameters can be

written as

� = Bv0

mg′ , (2)

� = B/m√
g′/D

. (3)

The Shields number � gives the dimensionless shear force at
the top of a static bed. � is the ratio of the gravitational settling
time τs = √

D/g′ to the viscous time scale m/B. Since the
particle Reynolds number Rep = v0D

ν
, where ν is the kinematic

viscosity, and the Stokes drag is proportional to ρf νD, where
ρf is the fluid density, the ratio �

�2 = mv0
BD

∝ ρg

ρf
Rep (ρg is

the mass density of the grains) compares the inertia of grains
entrained in the flow to the strength of the viscous drag.

To characterize flow onset and cessation in our system, we
employed two protocols. In protocol A, to study the mobile-to-
static transition, we distributed particles randomly throughout
the domain and set a constant value of � for a total time of
roughly 105τs . We consider the bed to be at rest when the
maximum net particle acceleration amax is below a threshold
athresh roughly one order of magnitude smaller than g′ and
roughly three orders of magnitude smaller than typical values
for a moving bed. In protocol B, to understand the dynamics of
the static-to-mobile transition, we begin with a static bed from
protocol A and slowly increase � in increments 	� = 0.01�.
If amax < athresh after roughly one intergrain collision time,
then � is increased. If amax > athresh, we keep � constant
until amax < athresh. We designate a system as mobile under
protocol B with slightly different criteria: amax/athresh > 10
and v̄g > 0.04Vs , where v̄g is the average horizontal velocity
of all grains and Vs = √

g′D is the settling velocity. These
thresholds filter out small rearrangement events, keeping only
states with substantial grain motion.

III. RESULTS AND DISCUSSION

Figure 2 shows the boundaries between mobile and static
beds as a function of � and Rep from simulations with b = 2,
4, and 6. We find a curve �c(Rep) above which the particles
are unable to find a stable packing under protocol A. In the
low-Rep limit near �c, grain motion is highly overdamped,
and particles do not leave the bed. As Rep is increased, the
inertial effects of mobilized particles striking the bed make
finding a stable configuration more difficult, decreasing �c

significantly. Figure 2 shows parameter values where grain
motion does (blue circles) and does not (green squares) stop
under protocol A. We then apply protocol B to stopped systems
and find another boundary �0(Rep) that specifies when grain
flow can be initiated. For low Rep, �0 < �c, and bed motion
initiated near �0 is temporary. Thus, at low Rep, permanent
grain motion is initiated at �c in the large system limit, as we
discuss below. However, in the high-Rep limit where particle
inertia is dominant, we observe significant hysteresis: grain
motion is initiated at �0, which is well above the value of
�c where mobile particles colliding with the bed can sustain
bed motion. We also note that this result is consistent with
Ref. [24], where, in simulations of Aeolian transport at high
Rep, a significant perturbation or lift force was required near
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FIG. 2. (Color online) The flow diagrams, Shields number �

versus particle Reynolds number Rep , with (a) b = 2, (b) b = 4, and
(c) b = 6. Diagonal lines of data points correspond to lines of constant
�. The symbols show systems that came to rest ( ) or never stopped
( ) under protocol A, and were permanently ( ) or temporarily (•)
mobile as � was increased under protocol B. The dashed line shows
�c, above which the inertial effects from particles entrained in the
flow lead to sustained motion. The solid line indicates �0, below
which the system will never be mobilized. The two large black open
circles mark the parameter values we study in Fig. 6.

�c to initiate grain motion. Temporary (filled black circles)
and permanent (red crosses) motion under protocol B are also
marked in Fig. 2. The basic nature of the flow diagram is
insensitive to variations in b, although the numerical values
for �0(Rep) and �c(Rep) change. We note the similarities of
�c(Rep) in Fig. 2 to the experimental and observational data
compiled in Refs. [7,10,11], even though our model is highly
simplified. Both display a plateau in the onset value of � at

TABLE I. The flow velocity ratios at different heights and the
particle Reynolds number when �0 = �c. va , v0, and vb are the fluid
velocities above the bed, at the surface of the bed, and in the interior
of the bed, respectively.

b va/v0 v0/vb va/vb Rep when �0 = �c

2 2.23 1.97 4.39 Rep ≈ 50
4 4.95 3.89 19.3 Rep ≈ 10
6 11.02 7.69 84.8 Rep ≈ 3

low Rep, a decrease in the onset value at moderate Rep, and a
lower plateau value at high Rep.

The b parameter sets the ratios between the fluid velocity
above the bed (va), at the top of a static bed (v0), and in the bulk
of the bed (vb) where grains are packed densely (at φi ≈ 0.84).
If a grain is well above the bed, φi ≈ 0.1 (since the grain itself
contributes to the local packing fraction), so the ratio of the
fluid velocity for this grain to the fluid velocity at the top
of an otherwise static bed (where φi ≈ 0.5 and thus f = 1) is
va/v0 ≈ e0.4b. Table I shows the ratios va/v0, v0/vb, and va/vb

for b = 2, 4, and 6. Note that these ratios increase with b, and
that varying b changes all ratios simultaneously. Obviously, a
fluid flow model with an additional parameter could decouple
the va/v0 and v0/vb ratios, but the model used here was chosen
as a very simple way to interpolate between a large fluid
velocity above the bed and a small fluid velocity inside the
bed. Figure 2 shows that the flow diagram is qualitatively the
same for b = 2, 4, and 6. �0 is relatively insensitive to b,
but �c shifts to smaller Rep and the gap between the plateau
values at large and small Rep widens with increasing b.

A. Protocol A: Mobile-to-static transition

Figure 3 shows data from protocol A near �c, which we find
to be nearly independent of system size, as we discuss below. In
Fig. 3(a), we show the time evolution of v̄g multiplied by the fill
height ND/W and normalized by Vs . At short times (solid red
curve), v̄g increases linearly with � and connects continuously
to v̄g = 0. This is the expected relation for frictionless granular
systems: no motion occurs below the yield stress, while above
the yield stress the strain rate increases as a power law in
the difference between the applied and yield stresses [25].
However, at long times we observe a discontinuity in v̄g at
�c, as has also been observed in experiments [12] as well as
simulations of Aeolian transport [24] and sheared frictional
granular media [26]. The discontinuity in v̄g moves toward
�c as time increases. The size of the discontinuity and the
slope v̄g/� both scale roughly linearly with Rep, as shown
in Fig. 3(b). For Shields numbers below �c, the grains settle
into a stable packing in a time ts that diverges as � → �c, as
shown in Fig. 3(c).

Figure 1 shows that mobile grains are confined to a
relatively small layer at the top of the bed. So, for fill
heights studied here (ND/W > 8), we find the total flow rate
v̄gND/W as a function of � and � is insensitive to the system
size (recall, v̄g is the average velocity of all grains). One might
think that the discontinuity in the the flow rate near �c may
disappear in the large-system limit: small systems of grains
are able to find a stable configuration, but very large systems
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FIG. 3. (Color online) Data from protocol A near �c. (a) Time
evolution of the average grain velocity v̄g(t) during protocol A. The
solid red curve characterizes grain motion at the time for grains to
settle under no fluid flow ts0, the black curve with open circles marks
the end of the simulation, and dashed curves represent intermediate
times. At long times, we observe a discontinuity in v̄g with magnitude
δ and slope m at �c. (b) δ and m scale roughly linearly with Rep . (c)
The time ts required for the grains to come to rest as a function of � for
varying Rep (left to right, blue to red, represents large to small Rep);
symbols show � = 0.01 (∗), 0.02 (�), 0.05 (	), 0.1 (�), 0.15 (�), 0.2
(�), 0.25 (�), 0.5 (
), and 1 (◦). The lines show fits of (ts − ts0) ∝
(�c − �)α , where the values of α are marked next to each plot. (d) ts
is plotted as a function � for b = 4, � = 0.24, and three system sizes.
The symbols correspond to (W/D, N ): black circles (100, 800), blue
squares (50, 400), and red triangles (50, 800). Data points show the
mean of ten simulations, and error bars give the standard deviation.
The inset shows a logarithmic plot of the mean of ts − ts0. The thick
dashed line corresponds to (ts − ts0) ∝ (�c − �)−2.5.

will always have a weak spot that does not allow the system to
stop. However, this is not the case. Figure 3(d) shows that the
behavior near � = �c is insensitive to the system size. The
stopping time as a function of � is shown for three different
system sizes, and the three curves are virtually identical. The
mean and fluctuations of the stopping time both diverge as
a power law as � → �c. The data shown is for � = 0.24
and b = 4, where �c > �0, and the power law exponent is
roughly 2.5. As shown in Fig. 3(c), this exponent is roughly
3 in the low Rep limit, and it decreases with increasing Rep
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FIG. 4. (Color online) Profiles of the layer-averaged instanta-
neous fluid drag force (solid red lines) and the local pressure (black
dashed lines) for b = 4 and � = 0.25, with (a) � = 0.2, (b) 0.35, and
(c) 0.4.

to less than 1 in the high Rep limit. �0 is also shown, and it
corresponds reasonably well to where the divergence begins,
which suggests that �c − �0 is related to the power law
exponent of the divergence.

In Fig. 4, we show typical force profiles during protocol A
for grains under three different conditions. All panels have b =
4 and � = 0.25, but with varying �. Solid red curves show the
average force exerted by the fluid on the grains at a particular
height. Black dashed curves show the average pressure due
to grain-grain contacts as a function of height. To calculate
the pressure, we first calculate the force moment tensor Mi

αβ at
particle i by summing over the particles j that contact particle i

to obtain Mi
αβ = 1

Ri

∑
j F

ij
α r

ij

β , where Ri is the particle radius,

α and β represent Cartesian components, and r
ij

β represents
the β component of the branch vector connecting the center of
particle i with the point of contact with particle j . The mean of
the eigenvalues of this tensor provides a grain-scale estimate of
the local pressure, which we then average over the horizontal
direction to obtain the average contact force F̄c. We plot F̄c

in Fig. 4 as a function of height from the lower boundary as
a black dashed line, which has roughly slope 1 in all plots.
Thus, the contact forces below the surface are dominated by
the weight of grains above a particular layer. Figure 4(a) shows
� = 0.2, which is below both �0 and �c, so grains are not
moving. Figure 4(b) shows � = 0.35, so the flow is metastable
and grains will eventually come to a stop. Figure 4(c) shows
� = 0.4, so grains continue to move indefinitely.

B. Protocol B: Static-to-mobile transition

For � > �c, a sufficiently large perturbation will lead
to sustained bed motion. At high Rep, this motion never
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FIG. 5. (Color online) The probability pf that bed failure occurs
at depth yf (where yf = 0 is the top of the bed) is proportional to the
local fluid force for (a) b = 2 and � = 0.1, (b) b = 4 and � = 0.25,
and (c) b = 6 and � = 0.5. The bed failure depth is determined as
the depth of the particle whose acceleration first exceeds athresh (or
a weighted average of depths, if multiple grains meet this condition
simultaneously). The agreement between pf (yf ) and the local fluid
force is good for b = 4 and 6 cases, but there is a deviation for the
b = 2 case, such that pf is smaller than expected near the lower
boundary and bed surface. One explanation for this is that failure
events are less localized, causing the weighted average of ai > athresh

to be more likely in the middle of the system.

begins for � < �0. But as the red crosses in Fig. 2 show,
stable motion is not always initiated at these minimum values
but depends on the particular arrangement of grains in the
bed. We show that sustained grain motion is consistent with
Weibullian weakest link statistics [22,23] and that failure
events are always initiated at �c for low Rep and �0 for high
Rep for sufficiently large systems.

First, we note that although the first large-scale motion of
the grains always occurs at the top layer of grains, failure events
do not always originate there. If we measure the depth of the
particle whose acceleration first exceeds athresh at �f , we find
that it can occur at any depth yf below the bed surface, with
a probability distribution pf that is proportional to the local
applied fluid force, as shown in Fig. 5. Essentially, the ratio
of the probability of failure at the surface to the probability
of failure in the bed is roughly given by the ratio between the

fluid force at the top of the bed to that inside the bed v0/vb, as
given in Table I. Thus, while large-scale particle motion always
begins at the surface of the bed, this motion is often correlated
to small particle rearrangements that occur deep in the bed.

Figures 6(a) and 6(d) show that the probability distribution
P (�f ) approaches δ(�f − �c) for low Rep and δ(�f − �0)
for high Rep in the large system limit, where we varied both
N and W to change the system size. The insets show that
the distributions P (�f ) collapse when rescaled by their mean
values. The system-size dependence suggests a “weakest link”
picture: at a given value of excess stress above �c or �0 (for
low and high Rep, respectively), there is a better chance of
finding a sufficiently weak local grain arrangement somewhere
in a larger system. If we consider the bed to be a composite
system of M uncorrelated subsystems that fails if any of the
subsystems fail, the cumulative distribution CM (�) for failure
is related to that of a single subsystem C(�) by

1 − CM (�) = [1 − C(�)]M. (4)

If we assume a Weibull distribution [22,23,27]

C(�) = 1 − exp

[(
� − �c

β

)α]
, (5)

then CM (�) will have the same form with αM = α and βM =
βM−1/α . Figures 6(a) and 6(d) show that P (�f ) = dC/d�f

does indeed obey a Weibull distribution with shape parameter
α ≈ 2.6.

Thus, if Eq. (5) fits the data, and if α is constant but
β ∝ M−1/α as M is varied, then Eq. (4) applies, and global
failure is caused by the failure of a single member of a
collection of uncorrelated subsystems. Figures 6(b) and 6(e)
confirm this, showing that the mean Shields number at flow
onset �̄f scales as (�̄f − �c) ∝ M

−1/α

eff for small Rep and
(�̄f − �0) ∝ M

−1/α

eff for large Rep, where Meff = WeffHeff/

D2 is the effective system size. This scaling means that larger
systems are more likely to fail near �c or �0 for small and
large Rep, respectively. However, systems that fail near these
minimum values are very slow to become fully mobilized.
To demonstrate this, we consider the mobilization time tm,
defined as the time between the initial force imbalance that
leads to failure and the time when v̄g reaches its asymptotic
value. As shown in Figs. 6(c) and 6(f), this time scale also
diverges as � → �c for low Rep and � → �0 for high Rep,
and is independent of system size.

To calculate Meff , we determine Weff and Heff as follows.
Since the vertical symmetry is broken by the fluid forcing
profile, we calculate Heff by integrating the probability of
failure over the depth of the system, which is equal to the fluid
force profile. That is, Heff is the integral of the profiles shown
in Fig. 5 over the depth of the bed, since the relevant system
size for the Weibullian weakest link scaling has to do with
the probability of local failure, and, as previously mentioned,
particles near the surface cause failure with a likelihood that
is greater than particles beneath the surface by a factor v0/vb.
We find that this form for Heff collapses the data for systems
that are sufficiently large in the horizontal (periodic) direction.
We also check the form of Heff for a case where b = 2 and
� = 0.1, such that v0/vb ≈ 1.97, and we find it to collapse
the data well according to the Weibullian scaling. The form
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FIG. 6. (Color online) Onset of bed motion is governed by Weibullian weakest-link statistics. Panels (a)–(c) correspond to low Rep with
� = 0.25, and (d)–(f) correspond to high Rep with � = 0.1. Panels (a) and (d) show the probability distribution of the Shields number at bed
failure �f for many different system sizes (W/D from 3.125 to 200, N from 25 to 1600, and WN/D from 8 to 80). The dashed vertical
lines define (a) �c and (d) �0. The insets show that P (�f ) collapses when rescaled by �̄f − �c, where �̄f is the mean of each distribution.
The solid line is a Weibull distribution with shape parameter α ≈ 2.6. Panels (b) and (e) indicate that �̄f − �c for low Rep and �̄f − �0 for
high Rep scale with the effective system size M

−1/α

eff . Panels (c) and (f) show that tm, the mobilization time after bed failure, diverges near
�c and �0, respectively, independent of system size. The insets show a logarithmic plot of tm − tm,0 versus (c) � − �c and (f) � − �0. The
dashed lines show tm − tm,0 ∝ (� − �c)−0.43 (c) and tm − tm,0 ∝ (� − �c)−0.9 (f), and the thin vertical dashed line indicates �c. Symbols
( ) correspond to different values of N (25, 50, 100, 200, 400, 800, and 1600, respectively) with varying W/D. Each data
point represents an average of 20 simulations.

of Heff confirms our observation that surface grain motion
can be initiated from deep beneath the surface, as it is also
proportional to the local applied shear force.

The horizontal dimension is symmetric, but we find finite
system-size effects when W/D < ξ , where ξ is a horizontal
correlation length that varies with Rep. As shown in Fig. 6, we
find Meff = 0.91(�̄f − �c)−α for large systems, where Heff

is calculated using the method described previously. However,
when the horizontal dimension becomes small, we observe
that (�̄f − �c) is larger than expected, which corresponds to
an effective system width Weff that is smaller than the real
system width W .

If Meff = 0.91(�̄f − �c)−α = HeffWeff/D
2, and we as-

sume that Weff/W = ζ (W/D), then we can write

ζ (W/D) = 0.91(�̄f − �c)−α D2

HeffW
. (6)

A plot of this quantity is shown in Fig. 7, and the fit line
corresponds to

ζ (W/D) = 1 − exp

[
− W

ξD

]
. (7)

As Fig. 7 shows, the form Weff/W = 1 − exp [− W
ξD

]
captures the finite-size effects. We find a similar result for the
high Rep case in Figs. 6(d)–6(f), where � = 0.1 and b = 4,

but with a smaller value of ξ ≈ 3. The form of Weff suggests a
horizontal correlation length of roughly ξ , which is larger for
low Rep (ξ ≈ 17) than for high Rep (ξ ≈ 3).
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FIG. 7. (Color online) This plot shows the finite system size
effects in the horizontal periodic direction (with b = 4 and � = 0.25,
which are the same values for the low Rep data shown in Figs. 6(a)–
6(c)). The horizontal axis is the system width in particle diameters,
W/D. As we show in Figs. 6(a)–6(c), we find Meff = 0.91(�̄f −
�c)−α for large systems. The vertical axis shows this quantity,
0.91(�̄f − �c)−α , divided by the product of the effective fill height
Heff/D and the width in particle diameters W/D. This shows a good
collapse, and the fit line corresponds to Weff/W = 1 − exp [− W

ξD
],

with ξ = 16.7, and 95% confidence interval of roughly 15 < ξ < 20.
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IV. SUMMARY

In summary, we performed numerical simulations of a
granular bed subjected to a simple fluid shear flow to
understand general features of the initiation and cessation
of grain motion. The critical Shields number for the onset
of grain motion �c(Rep) from the simulations is consistent
with the behavior from a large body of experimental results
[7,10,11]. At low Rep, �c(Rep) separates mobile and static
beds, but at high Rep, we observe significant hysteresis as
a consequence of particle inertia. We find that the onset of
grain motion is directly connected to the packing structure,

even deep in the bed where there is a weak but nonzero fluid
stress [19–21]. Our results from this simple model clarify the
essential physics governing the transition between mobile and
static beds. In future work, additional effects such as turbulent
flow, intergrain friction, and nontrivial particle shape can be
added one-by-one to determine their distinct effects on the
onset and cessation of grain motion.
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