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Particle-scale reversibility in athermal particulate media below jamming
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We perform numerical simulations of repulsive, frictionless athermal disks in two and three spatial dimensions
undergoing cyclic quasistatic simple shear to investigate particle-scale reversible motion. We identify three
classes of steady-state dynamics as a function of packing fraction φ and maximum strain amplitude per cycle
γmax. Point-reversible states, where particles do not collide and exactly retrace their intracycle trajectories, occur
at low φ and γmax. Particles in loop-reversible states undergo numerous collisions and execute complex trajectories
but return to their initial positions at the end of each cycle. For sufficiently large φ and γmax, systems display
irreversible dynamics with nonzero self-diffusion. Loop-reversible dynamics enables the reliable preparation of
configurations with specified structural and mechanical properties over a broad range of φ.
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I. INTRODUCTION

Granular materials, foams, and other athermal particulate
media are highly dissipative, and therefore must be driven
to induce particle motion. Experimental studies of granular
media have shown macroscale reversibility of bulk properties
such as the packing fraction during cyclic shear [1] and
vibration [2]. In addition, experimental and computational
studies of 2D foams have identified reversible and irreversible
T1 neighbor switching events of individual bubbles during
cyclic shear [3]. Researchers have also shown that motion of
individual particles transitions from reversible to irreversible
beyond a density-dependent critical strain, which decreases
with increasing packing fraction, in cyclically sheared dilute
suspensions at low Reynolds number [4,5]. In contrast to fluids
at low Reynolds number, where the Navier-Stokes equations
are time reversible, Newton’s equations of motion for strongly
dissipative granular media are not, and thus one might assume
that they do not display particle-scale reversibility under cyclic
driving. In this paper, we determine whether granular media
can undergo completely reversible particle-scale motion due
to intergrain collisions when subjected to cyclic loading.
This broad question has been addressed in several systems,
including dilute suspensions [4,5], amorphous metals [6], and
more recently in granular materials [7]. One might expect that
highly dissipative systems like granular media would never be
reversible. Here we show that, on the contrary, there exist wide
parameter regimes where athermal particulate systems are
reversible. We address this question by performing numerical
simulations of frictionless granular materials in two (2D) and
three spatial dimensions (3D) undergoing quasistatic cyclic
simple shear over a wide range of packing fractions φ and
shear strain amplitudes γmax.

We identify two classes of grain-scale reversible motion:
point and loop. For point-reversible dynamics, particles do
not collide during the forward cycle, and thus they exactly
retrace their trajectories upon reversal. In contrast, particle
collisions occur frequently during loop-reversible dynamics,
but the system self-organizes so that particles return to the

same positions at the beginning of each cycle. We map
out the “dynamical phase diagram” versus φ and γmax.
The system transitions from point- to loop-reversible and
then from loop-reversible to irreversible [6,7] dynamics with
increasing φ and γmax. We show that the time evolution
toward steady-state point- and loop-reversible behavior can
be collapsed onto a universal function with power-law scaling
at short and intermediate times and exponential decay at long
times. We find qualitatively similar behavior for both 2D and
3D systems. Further, we have identified parameter regimes
well-below jamming onset where complex spatiotemporal
particle dynamics occurs. In contrast, the jamming literature
has focused heavily on the response to shear for solid-like
particulate systems near jamming onset. Previous studies have
assumed incorrectly that the nonlinear response of unjammed
systems below φJ is fundamentally different from that near
jamming. This is clearly not true for the onset of loop
reversibility since the volume fraction corresponding to this
onset, φL(γmax), decreases continuously below jamming onset
with increasing maximum strain amplitude.

In addition, our findings have the potential to improve
processing strategies and give insight into the frequency-
dependent rheological properties of granular media and other
athermal particulate media over a wide range of packing
fraction. In particular, exploiting loop-reversibility should
enable the design of athermal particulate systems with tunable
structural properties, such as an excess of interparticle contacts
over that for thermal systems at the same density.

II. MODEL AND METHODS

We perform numerical studies of N athermal spherical par-
ticles undergoing quasistatic, cyclic simple shear at constant
φ using shear-periodic boundary conditions in square (cubic)
cells [8]. Particles interact via the pairwise, purely repulsive
linear spring potential

V (rij ) = ε

2

(
1 − rij

σij

)2

�(σij − rij ), (1)
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where rij is the center-to-center separation between particles i

and j , �(x) is the Heaviside step function, σij = (σi + σj )/2,
and σi is the diameter of particle i. We focus on bidisperse
particle-size distributions, i.e., 50-50 mixtures by number with
diameter ratio σl/σs = 1.4, to frustrate crystallization during
shear [9]. In Appendix A, we consider system sizes from N =
32 to 512 to assess finite-size effects for packing fractions
below and near the onset of jamming (φJ ∼ 0.84 [10] in 2D
and ∼ 0.65 in 3D) and find that they are small.

The particles are initially placed randomly in the simulation
cell at packing fraction φ and then relaxed using conjugate
gradient energy minimization [9]. We apply simple shear strain
by shifting each particle horizontally,

xi
n,k+1 = xi

n,k + �γyi
n,k, (2)

in increments of �γ = 10−3, where xi
n,k and yi

n,k are the
coordinates of particle i at step k of strain cycle n. This
method of applying uniform simple shear strain is similar to
that employed in recent experiments on granular materials,
where disks rest on a substrate made of slats that can move
independently to apply uniform strain [11]. After each strain
step, we minimize the total potential energy at fixed shear
strain, i.e., γk = k�γ for the forward or γk = 2γmax − k�γ

for the reverse part of the cycle. This process is repeated for
up to n = 106 cycles. Note that the simple shear applied here
is uniform, and we employ Lees-Edwards periodic boundary
conditions. In this method, we do not include the effects
from system boundaries and nonuniform strain. However, we
believe that a systematic approach where we first understand
particle-scale reversibility in response to an idealized strain
deformation (and then consider the response to nonuniform
shear strain and wall effects) will lead to the most insight.
We also note that idealized uniform simple shear strain can
indeed be implemented in experiments; for example, in (i)
high Peclet number, neutrally buoyant charged colloids placed
in an oscillating electric field or field gradient [12,13]; (ii) disks
resting on an elastic membrane that is subjected to oscillating
strain; and (iii) disks resting on slats or sliders that can be
moved independently [11].

We measure the single-cycle mean-square displacement (at
step k = 0),

�r2
1 (n) = (

Nσ 2
s

)−1 ∑
i

[(
Xi

n,0 − Xi
n+1,0

)2

+ (
Y i

n,0 − Y i
n+1,0

)2 + (
Zi

n,0 − Zi
n+1,0

)2]
, (3)

and arc length,

L2(n) = (
Nσ 2

s

)−1 ∑
i

{∑
k

[(
Xi

n,k+1 − Xi
n,k

)2

+ (
Y i

n,k+1 − Y i
n,k

)2 + (
Zi

n,k+1 − Zi
n,k

)2]1/2

}2

, (4)

versus n, where Xi
n,k = xi

n,k − γkyn,k , Y i
n,k = yi

n,k , and Zi
n,k =

zi
n,k are the nonaffine displacements of particle i after sub-

tracting off the affine contribution. The long-time dynamics
are either reversible or irreversible depending on φ and γmax.
We quantify the steady-state behavior by measuring �r2

1 (n)

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. (Color online) Particle tracks (solid lines) in a small
window of a N = 128 system of bidisperse disks undergoing (a)
point-reversible, (b) loop-reversible, and (c) irreversible behavior
during cyclic simple shear. Panels (d), (e), and (f) show the disks’
tracks in panels (a), (b), and (c), respectively, after subtracting off
the affine motion. The systems in (a) and (d) correspond to φ = 0.64
and γmax = 0.8, (b) and (e) to φ = 0.8 and γmax = 0.8, (c) and (f)
to φ = 0.82 and γmax = 0.8. Pluses, circles, and crosses mark the
beginning, middle, and end of the particle tracks, and particle outlines
correspond to the beginning of the cycle.

and L2(n) of the intracycle particle trajectories (normalized
by the small particle diameter).

We define the three classes of dynamics as follows. Particles
in point-reversible systems organize to avoid collisions. When
no collisions take place, L(n) = �r1(n) = 0, or more aptly,
they fall below small numerical thresholds, e.g., �r1(n) <

τr = 5 × 10−4 and L(n) < τL = 10−8. The values of τr and
τL do not qualitatively affect our results as long as they
are sufficiently small (cf. Appendix C). Particle motions for
point-reversible systems are affine and in the direction of
the imposed affine shear [Fig. 1(a)]. Thus, the nonaffine
tracks of each particle are zero [Fig. 1(d)]. In loop-reversible
systems, particle collisions occur frequently, but the system
self-organizes so that particles return to the same positions as at
the start of each cycle. Since collisions between particles occur,
L(n) > 0, but �r1(n) = 0 (i.e., below τr ). [See Figs. 1(b)
and 1(e).] Individual particle trajectories form closed loops in
configuration space. We focus on period one loop-reversible
systems, but multiperiod dynamics are also found. Particles
in systems undergoing irreversible dynamics do not return
to their original positions at the beginning of each cycle
[Figs. 1(c) and 1(f)]. Irreversible systems have nonzero �r1(n)
and L(n) [i.e., L(n) > τL and �r1(n) > τr ]. Systems can
be “transient” irreversible in time and evolve into point- or
loop-reversible systems or steady-state irreversible and remain
irreversible in the large-cycle limit with nonzero self-diffusion.
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FIG. 2. (Color online) (a) “Dynamical phase diagram” for N = 128 bidisperse disks in 2D after n = 104 cycles showing point-reversible
(circles), period-one (pluses), or multiperiod (crosses) loop-reversible, and transient (triangles) or steady-state (squares) irreversible dynamics
versus γmax and φ for 16 independent initial conditions. The solid and dashed lines indicate φL(γmax) and φI(γmax), the boundaries between
point- and loop-reversible dynamics and between loop-reversible and irreversible dynamics, respectively. The vertical dotted and dot-dashed
lines define φR = π/4 � 0.785 and φJ ≈ 0.84. (b) Arc-length L vs. intracycle mean-square displacement �r1 after n = 10 (blue), 3 × 102

(red), and 104 (black) cycles. The regions labeled L, T , and I define loop-reversible, transient irreversible, and steady-state irreversible
dynamics, respectively. The point-reversible (P) region extends from L = �r1 = 10−6 to 10−16 but is not shown. The dashed boundaries
indicate �r1 = τr , �r1 = 0.3, L = τL, L = 30�r1, and L = �r1 discussed in the main text. The inset shows the fraction Ft of systems in (a)
categorized as point-reversible (solid), loop-reversible (dashed), transient irreversible (dotted), and irreversible (dot-dashed) dynamics versus
n. Panels (c) and (d) show the same data as (a) and (b) but for 3D systems.

We also studied the structural properties of the systems as a
function of φ and γmax. We measured the global (ψg

6 ) and local
(ψl

6) bond-orientational order parameters [14] and the layering
order parameters [15] in the directions perpendicular (l⊥) and
parallel (l||) to the applied strain:

l|| = 1

N

N∑
i=1

1

Ni
n

Ni
n∑

j=1

cos(2πxij /σij ) (5)

l⊥ = 1

N

N∑
i=1

1

Ni
n

Ni
n∑

j=1

cos(2πyij /σij ), (6)

where Ni
n is the number of neighbors of particle i (with rij �

1.5σij ).

III. RESULTS

A. Phase diagrams for 2D and 3D

The steady-state “dynamical phase diagram” in Fig. 2(a)
for cyclically sheared athermal disks shows point- and loop-
reversible, as well as irreversible regimes versus φ and
γmax for systems in 2D. Point-reversible systems occur at
low φ and γmax, whereas irreversible systems occur for
φ � φJ [16,17]. At intermediate packing fractions between
contact percolation [10] and the onset of jamming, e.g.,
0.6 � φ � 0.84 in 2D, loop-reversible systems are found.

The boundary between point- and loop-reversible systems
is γmax ∼ A(φ)(φJ − φ)λ�(φJ − φ), where A(φ) depends
weakly on φ and λ ∼ 1.2 ± 0.1 for φ → φJ and 2.2 ± 0.2
for φ � φJ . Over a finite number of cycles [i.e., n < 104

in Fig. 2(b)], transient irreversible dynamics can occur, but
these systems become point-reversible, loop-reversible, or
steady-state irreversible as n → ∞. Point-reversible systems
tend to form ordered, size-segregated layers (cf. Sec. III C), in
which particles cannot collide during simple shear. Further,
the loop-reversible to irreversible transition in steady-state
φI (γmax) is bounded in the large-γmax limit by the highest
packing fraction φR = π/4 � 0.785 at which systems in 2D
can form size-segregated layers in the N → ∞ limit.

In Fig. 2(b), scatter plots of L(n) versus �r1(n) illustrate
the evolution of the dynamics with increasing n. The points
form several well-defined clusters: point-reversible (P) with
L < τL and �r1 < τr , loop-reversible (L) with nonzero L

(L > τL) and �r1 < τr , and irreversible (I) with nonzero L

(L > τL) and �r1 (�r1 > τr ). The P , L, and I clusters are
separated by more than 3 orders of magnitude in �r1 or L.
For region L, we also mandate L > 30�r1 since systems with
L < 30�r1 typically relax to point-reversible states. We also
enforce �r1 > 0.3 to define regionI since systems with �r1 <

0.3 typically relax to point- or loop-reversible states. Systems
that do not fall within regions P , L, and I are categorized
as transient irreversible (T ). As n increases, the fraction Ft

of systems in the transient regime vanishes as a power-law
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n−α (α ≈ 0.56 ± 0.01), while the fraction of point-reversible,
loop-reversible, and steady-state irreversible systems saturates
near 104 cycles [inset to Fig. 2(b)].

Three-dimensional systems exhibit qualitatively similar
behavior. Figure 2(c) shows the dynamical phase diagram
for 3D bidisperse systems (50-50 mixtures with size ratio
d = 1.4) for N = 128 after n = 104 cycles. We find a point-
to loop-reversible transition when the packing fraction φ >

φL(γmax), where φL(γmax) approaches random close packing
φJ ≈ 0.65 [18] (for bidisperse mixtures) in the limit γmax → 0.
In Fig. 2(d), we show the evolution of dynamics with increasing
n, which is also similar to that illustrated in Fig. 2(b). Thus,
we conclude that the response to cyclic shear is not sensitive
to spatial dimension for these bidisperse mixtures, and for the
remainder of this paper we focus on 2D systems.

B. Approach to steady-state dynamics

Next we characterize the dynamics as the systems approach
steady-state point- and loop-reversible states [Fig. 3(a)]. We
find that the single-cycle mean-square displacement can be
described by a function that interpolates between power-law
and exponential decays at short and long times, respectively:

�r
f

1 (n) = f+(n)(n/nc)−α + f−(n)e−β(n−nc), (7)

where f±(n) = (1 + e±γ (n−nc))−1, γ ∼ 1, nc is the cycle
number at which the decay changes from power-law to
exponential behavior, α is a power-law scaling exponent, and
β characterizes the exponential decay.

In Fig. 3(b), we plot the best fit �r
f

1 (n) versus �r1(n)
at each γmax and φ for systems in Fig. 2 that evolve to point-
reversible states. The scaling function in Eq. (7) collapses more
than 60% of point-reversible systems with deviations � =
〈( log10 �r

f

1 (n) − log10 �r1(n))2〉 < 0.18. The top and bottom
insets in Fig. 3(b) show the power-law scaling and exponential
decay of �r1(n) separately. We find similar scaling for the
approach to loop-reversible states. However, the exponential
decay for loop-reversible systems is difficult to differentiate
from numerical error because the long-time dynamics occurs
at larger nc and smaller �r1 than that for point-reversible
systems. In Fig. 3(c), we show the power-law decay for all
systems that evolve to loop-reversible dynamical states. In the
inset, we also show several systems for which we captured the
long-time exponential decay.

In Fig. 4(a), we show the power-law scaling exponent α for
systems that evolve to point- and loop-reversible states versus
φ and γmax. We find that α � 1 for all loop-reversible systems
and point-reversible systems near the crossover from point- to
loop-reversible behavior, which suggests that the origin of the
slow dynamics is related to contact or “collision” percolation.
In contrast, α > 1 for point-reversible systems at low φ and
γmax. In Fig. 4(b), we find that nc increases with φ and γmax and
appears to be diverging as the system approaches the transition
from point- to loop-reversibility.

We tested the stability of the point- and loop-reversible
states by perturbing all particles at strain γ = 0 by an
amplitude δ in random directions. We then performed cyclic
simple shear on the perturbed system and measured the
deviation, �r =

√
(Nσ 2

s )−1 ∑
i |�ri

n,0 − �ri,p

n,0|2, where �ri,p

n,0 are

FIG. 3. (Color online) (a) Single-cycle mean-square displace-
ment �r1 versus n for a point-reversible system at φ = 0.64 and
γmax = 0.5 (circles) and loop-reversible system at φ = 0.8 and
γmax = 0.5 (pluses) with best fits to �r

f

1 [Eq. (7)] indicated by
solid and dashed lines. (b) Comparison of �r1(n) (averaged over
16 initial conditions for each γmax and φ) to �r

f

1 (n) (black dots) for
point-reversible systems in Fig. 2 with � < 0.18. �r

f

1 (n) = �r1(n)
is indicated by the dashed line. The top left inset shows log10 �r1(n)
versus α log10 n/nc (black dots). The dashed line indicates �r1(n) =
(n/nc)−α . The bottom right inset shows log10 �r1(n) versus β(n − nc)
(black dots). �r1(n) = e−β(n−nc ) is indicated by the dashed line.
(c) log10 �r1(n) versus α log10 n (black dots) for systems in Fig. 2
that evolve to loop-reversible states with � < 0.04. �r1(n) = n−α

is indicated by the dashed line. The inset shows �r1 versus n for
three independent initial conditions at φ = 0.76 and γmax = 0.8.
Exponential fits to the large-n regime are shown as solid, dashed, and
dotted lines with slopes β = 0.029, 0.026, and 0.016, respectively.

the coordinates of the perturbed system after t cycles required
to reach steady state at each φ and γmax. We find that �r ∼ δ for
point-reversible systems. Thus, point-reversible states are only
marginally stable with interconnected regions of configuration
space. In contrast, loop-reversible systems are stable (with
vanishing �r < τr ) for perturbations δ < δc � 10−1, where δc

is relatively insensitive to φ for γmax � 1. Further details are
given in Appendix B.

C. Structural order

Our simulations employ initial conditions wherein particles
are placed randomly in the simulation cell, i.e., large and small
particles are fully “mixed.” For intermediate φ well below
jamming, as the number of cycles n increases, large and small
particles can phase-separate. Experiments have shown [1]
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(circles) or loop-reversible (crosses) states. (b) Contour plot of nc
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decay versus φ and γmax for point-reversible systems in (a).

that granular materials tend to crystallization upon shearing,
which could cause reversibility, i.e., particles do not touch
or collide, but rather occupy the sites of a (macroscopically
phase-separated) hexagonal lattice. If this is true, there should
be another transition from irreversible to reversible, when
crystallization appears at any density φ < φxtal, where the
close-packed crystalline density φxstal � 0.91 (2D) and � 0.74
(3D).

Alternatively, systems can microphase-separate into
“lanes” [13] of large and small particles with positional
ordering along the y but not the x or z directions, with
maximum packing fraction φR = π/4 (2D) and π/6 (3D).
It is important to examine which of these two possibilities
occur in our simulations. We do so using the order parameters
ψ

g

6 , ψl
6, l||, and l⊥ [Eqs. (5)–(8)]. Figure 5 shows results for

2D systems. We find that layering (not hexagonal ordering)
becomes stronger with increasing φ and γmax. This is evident
in both l⊥ and ψ

g

6 , which approach their limiting values, l⊥ = 1
and ψ

g

6 = 0.56, for a fully layered system with no correlations
between successive layers.

IV. DISCUSSION

Many particulate systems possess static frictional interac-
tions in addition to the purely repulsive contact interactions
included in the present computational model and undergo
fluctuations (either thermal or mechanical). However, the indi-
vidual contributions to reversibility from each of these effects
are not known, and it is extremely difficult to disentangle
the effects of steric interactions, friction, and fluctuations
when all are included at once. Here we investigated the role
of purely repulsive interactions (as well as dissipation) by
mapping out in what parameter regimes in the packing fraction
and shear amplitude plane particulate systems are reversible
versus irreversible. Prior to our studies, we argue that many
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FIG. 5. (Color online) (a) Global ψ
g

6 and (b) local ψl
6 bond-

orientational order parameters and layer order parameters (c) l⊥ and
(d) l|| for N = 128 systems after n = 104 cycles with no applied
shear (solid black) and maximum simple shear strain γmax = 0.4 (red
dashed), 0.8 (green dash-dash-dotted), 1.6 (blue dash-dotted), and
2.4 (purple dotted) as a function of packing fraction φ.

would have thought that athermal particulate systems are
always irreversible, without point and loop reversible states.
In particular, one might argue that at very low densities,
any fluctuations or perturbations (not necessarily thermal
fluctuations) eliminate reversibility, so that the low-density
states investigated here should be irreversible rather than
reversible. Our results for point- and loop-reversibility show
the contrary.

The advantage of the reductionist approach employed here
is that we better understand the role of purely repulsive contact
interactions, and are now in a position to add fluctuations and
frictional interactions to investigate their effects separately.
Note that this modeling approach has been applied successfully
during the past decade to understand jamming transitions in
particulate systems, first in systems of frictionless spherical
particles at zero temperature [19], in systems with static
friction [20], with thermal fluctuations [21], and in systems
composed of nonspherical particles [22]. In addition, this
approach can be applied in experiments that examine athermal
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particulate media—friction can be reduced using hydrogel [23]
or teflon [24] particles and affine shear can be applied in
2D systems without large fluctuations using the experimental
setup described in Ref. [11]. We believe that the results
presented here should apply to most quasistatically shear-
driven granular and athermal systems [25,26].

V. CONCLUSIONS

We studied the extent to which particle-scale motion is
reversible in athermal systems undergoing cyclic loading. We
identified two types of reversible behavior. For point-reversible
states, particles do not collide and trivially retrace their
paths. For loop-reversible states, all particles undergo multiple
collisions, yet all particles return to where they were at the
beginning of each cycle. We find that loop-reversible states
are stable and occur over a range of packing fractions from
contact percolation [10] to jamming onset, and thus our results
emphasize that complex spatiotemporal dynamics occur well
below φJ . Loop-reversibility enables reliable preparation of
athermal systems with dynamically tunable structural and
rheological properties over a broad range of packing fractions,
using strain as the control parameter. For example, the fact that
particles in loop-reversible states undergo collisions without
diffusion can be exploited in applications that range from
catalysts to pharmaceutical powders.

In future studies, we will investigate the role of static
friction on reversibility in granular systems, which we expect
will lead to only quantitative changes in the dynamical phase
diagram, and study systems above jamming to determine
the connection between the breakdown of elastic behavior
and the transition from reversible to irreversible motion. We
suggest that new experiments be performed to probe the
behavior of athermal particulate media as a function of packing
fraction and strain amplitude to investigate the proposed phase
diagram. We encourage studies: (i) examining a range of
particle interactions from frictionless to highly frictional, (ii)
employing different methods for applying the strain (e.g.,
pure and simple shear and extensional deformations), and
(iii) investigating the effects of fluctuations both thermal and
mechanical. The point and loop reversible regimes can be
mapped out in the phase diagram using 3D particle tracking
methods such as confocal microscopy [27] and refractive index
matched scanning [28].
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APPENDIX A: SYSTEM-SIZE DEPENDENCE

We find only weak finite-size effects in systems undergoing
cyclic simple shear. In Fig. 6, we compare the dynamical phase
diagrams for 2D bidisperse systems with N = 64 and 256. For
both system sizes, we find a transition from point- to loop-
reversible dynamics for φ > φL(γmax) and then from loop-
reversible to irreversible dynamics for φ > φI (γmax), though
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FIG. 6. (Color online) Dynamical phase diagram for (a) N = 64
and (b) 256 bidisperse disks subjected to cyclic simple shear after n =
103 cycles, showing point-reversible (circles), period-one (pluses),
or multiperiod (crosses) loop-reversible, and transient (triangles) or
steady-state (squares) irreversible dynamics versus γmax and φ (for 16
independent initial conditions). The solid and dashed lines indicate
φL(γmax) and φI(γmax), the boundaries between point- and loop-
reversible dynamics and between loop-reversible and irreversible
dynamics, respectively. The vertical dotted and dot-dashed lines
define φR = 0.785 and φJ ≈ 0.84, respectively.

systems with N = 64 display more coexistence of point- and
loop-reversible dynamical states near φL(γmax) than systems
with N = 256.

The best fit for φL(γmax) obeys

φL(γmax) ∝ (φ − φJ )α�(φJ − φ), (A1)

where α � 1.6 ± 0.4 for both N = 64 and 256. Note that the
power-law exponent α � 1.6 for systems with N = 64 and
256 at n = 103 cycles is larger than that found for N = 128
systems at n = 104 cycles. We find that the large-n limit for the
power-law exponent α is closer to 1 than 2. Also, systems with
N = 256 particles possess a smaller region in the L and �r1

plane for which all trials generate loops at n = 103 cycles.
This signals the growth in the relaxation time (or number
of cycles) nc with N after which systems reach steady-state
loop-reversible states.

We find only small differences in the single-cycle mean-
square displacement �r1, arc-length L, and packing fraction
φL(γmax) for system sizes with N � 64. In Fig. 7(a), we show
�r1 versus L for N = 64 and 256 after 103 cycles. For both
system sizes, the clusters of points representing point- and
loop-reversible as well as steady-state irreversible dynamics
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FIG. 7. (Color online) The arc length L versus the single-cycle
mean-square displacement �r1 after n = 103 cycles for 2D systems
with N = 64 (red points) and 256 (black points). The regions labeled
L, T , and I define loop-reversible, transient-irreversible, and steady-
state irreversible dynamics, respectively, using the same boundary
lines as those in Fig. 2(b). In the inset, we show the fraction of
systems that are point-reversible (solid), loop-reversible (dashed),
transient (dotted), and irreversible (dot-dashed) as a function of cycle
number n for N = 64 (thin) and 256 (thick). (b) The maximum shear
strain amplitude γmax versus the packing fraction φL(γmax), above
which the system transitions from point- to loop-reversible dynamics
after n = 103 cycles for N = 64 (dashed) and 256 (solid). The best
fit to Eq. (A1) is shown as a thin dotted line.

are in the same regions of the �r1 and L plane. However,
there are more points in the “transient” region for N = 256.

In the inset to Fig. 7(a), we show the fraction of systems in
the parameter space shown in Fig. 6 that are point reversible,
loop reversible, transient, and irreversible as a function of
cycle number n. We find qualitatively similar behavior for
N = 64 and 256. Both show an increasing fraction of point-
and loop-reversible systems that are beginning to reach their
large-n plateau values at n = 103 cycles and a continuously
decreasing fraction of transient states. Notice that the fraction
of point- and loop-reversible systems decays to the large-n
limit more slowly for N = 256 than for N = 64. Finally, in
Fig. 7(b), we show explicitly that φL(γmax) does not depend on
system size for N � 64 for γmax < 1, and φL → φJ ≈ 0.84 in
the limit γmax → 0.

APPENDIX B: LOOP STABILITY

To test the stability of steady-state point- and loop-
reversible systems in 2D, we perturb the x- and y-coordinates
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FIG. 8. (Color online) (a) Deviation �r between the particle
coordinates of the original and perturbed trajectories after n = 103

cycles following the perturbation as a function of the perturbation
amplitude δ for a point-reversible system at φ = 0.62 and γmax = 2.0.
Data is shown for 40 independent random perturbations at each δ.
(b) �r versus δ for stable loop-reversible systems at φ = 0.8 and
γmax = 0.2 (circles), 0.83 and 0.2 (squares), 0.74 and 0.8 (diamonds),
0.8 and 0.8 (pluses), and 0.74 and 1.4 (crosses). (c) �r versus δ for
a loop-reversible system with 1 dynamical floater at φ = 0.83 and
γmax = 0.1 (circles), and with the the dynamical floater removed from
the calculation of �r (crosses).

of all particles at cycle n0 and strain γ = 0,

x
i,p

0,0 = xi
n0,0 + σsδ

i
x, (B1)

y
i,p

0,0 = yi
n0,0 + σsδ

i
y, (B2)

where σs is the small particle diameter, δi
x and δi

y are chosen
from Gaussian distributions centered at zero with standard
deviation δ/

√
2, and the average perturbation amplitude is

δ =
√

(
∑

i(δ
i
x)2 + (δi

y)2)/N . We then perform cyclic simple
shear on the perturbed system and measure the deviation
between the perturbed and unperturbed particle trajectories,
�r =

√
(Nσ 2

s )−1 ∑
i |�ri

n,0 − �ri,p

n,0|2, where �ri,p

n,0 are the coordi-
nates of the perturbed system after t cycles required to reach
steady-state at each φ and γmax.

In Fig. 8(a), we show the deviation �r between the
unperturbed and perturbed particle positions at γ = 0 for
a system undergoing point-reversible dynamics at φ = 0.62
and γmax = 2.0. We find that �r scales with the perturbation
amplitude over a wide range of δ, which indicates that
point-reversible systems are only marginally stable.
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In Fig. 8(b), we show the deviation �r between the
unperturbed and perturbed particle positions at γ = 0 for loop-
reversible systems in the range 0.74 < φ < 0.83 and 0.1 <

γmax < 1.4. We find that these systems are stable because there
is a finite range of perturbation amplitudes 0 < δ < δ∗ over
which �r is below numerical precision (i.e., �r < τr ).

Loop-reversible systems near φL(γmax) can possess “dy-
namical floaters,” which are particles that do not incur any
collisions during a shear cycle, and thus their motion is affine.
In point-reversible systems, all particles are by definition
“dynamical floaters.” The loop-reversible systems in Fig. 8(b)
have no dynamical floaters. In Fig. 8(c), we show �r as
a function of δ for loop-reversible systems with a single
dynamical floater. If we include the dynamical floater in the
calculation of the deviation in the positions, �r begins to
increase for δ > 10−3. When the dynamical floater is removed
from the calculation of �r , we show that the loop-reversible
state is stable for δ < δc ≈ 10−1. Determining the stability of
loop-reversible systems is difficult for γmax > 1 because δc

decreases with increasing γmax.

APPENDIX C: EFFECTS OF NUMERICAL PRECISION

The error �L in the calculation of the arc length L for
loop-reversible systems has contributions from the size of the
shear strain step �γ and the energy minimization tolerance
Vtol:

�L ∼ k1�γ + k2

√
Vtol, (C1)

where k1 and k2 are order-one constants. Here we explore the
sensitivity of our results to the size of the shear strain step and
energy minimization tolerance.

1. Shear strain step size

We apply simple shear strain successively in increments of
�γ ,

xi
n,k+1 = xi

n,k + �γyi
n,k, (C2)

where �γ � 1. For the results presented in the main text, we
employ �γ = 10−3, but here we show that the results for the
arc length and single-cycle mean-square displacement are not
sensitive to the size of the shear strain step for �γ < 10−2.

In Fig. 9(a), we show the single-cycle arc-length 〈L〉
(averaged over 16 independent trajectories) as a function of
the cycle number n for shear strain amplitude γmax = 0.3,
packing fraction from φ = 0.56 to 0.83, and shear strain step
size from �γ = 10−4 to 10−2. For all φ studied, 〈L〉 does not
depend sensitively on �γ . Note that in Fig. 9 we chose a small
value Vtol = 10−16 for the energy minimization tolerance, so
that �γ determines the accuracy of the calculation of 〈L〉.

2. Energy minimization tolerance

After each strain increment, we minimize the total potential
energy of the system V until one of the following conditions
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FIG. 9. (Color online) Arc-length 〈L〉 averaged over 16 inde-
pendent trajectories versus cycle number n for systems of size
N = 128 at maximum shear strain amplitude γmax = 0.3, packing
fraction φ = 0.32 (black), 0.56 (red), 0.72 (green), 0.76 (blue), 0.78
(yellow), 0.81 (purple), and 0.83 (cyan). (a) Effect of shear strain
increment �γ = 10−2 (solid), 10−3 (dotted), and 10−4 (dashed) for
energy minimization tolerance Vtol = 10−16. (b) Effect of energy
minimization tolerance Vtol = 10−16 (solid), 10−8 (dotted), and 10−6

(dashed) for shear strain increment �γ = 10−3.

is satisfied:

Vl/(Nε) < Vtol, (C3)

|Vl − Vl−1|/Vl < Vtol, (C4)

where Vl is the potential energy after the lth minimization step
and ε is the unit of energy. The first condition corresponds
to an “unjammed” configuration with approximately zero
potential energy, and the second corresponds to a “jammed”
configuration with finite potential energy and pressure. Fig-
ure 9(b), which plots the arc length 〈L〉 versus n for the
energy minimization tolerance from Vtol = 10−16 to 10−6,
shows that the arc length does not depend sensitively on Vtol

provided that it is sufficiently small. Note that 〈L〉 ∼ √
Vtol for

point-reversible systems (i.e., systems with 0.56 < φ < 0.72
in Fig. 9). For loop-reversible systems (i.e., systems with
0.81 < φ < 0.83 in Fig. 9), the large-n value of the arc length
is independent of Vtol, but depends on φ and γmax.
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Royall, A. Imhof, and A. van Blaaderen, Soft Matter 7, 2352
(2011).

[13] J. Dzubiella, G. P. Hoffmann, and H. Löwen, Phys. Rev. E 65,
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