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Phase bubbles and spatiotemporal chaos in granular patterns
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We use inelastic hard sphere molecular dynamics simulations and laboratory experiments to study patterns
in vertically oscillated granular layers. The simulations and experiments revegittha¢ bubblespontane-
ously nucleate in the patterns when the container acceleration amplitude exceeds a critical valueg.about 7
where the pattern is approximately hexagonal, oscillating at one-fourth the driving frequiéatyA phase
bubble is a localized region that oscillates with a phase oppgdiitering by =) to that of the surrounding
pattern; a localized phase shift is often calledaaching in studies of two-dimensional systems. The simula-
tions show that the formation of phase bubbles is triggered by undulation at the bottom of the layer on a large
length scale compared to the wavelength of the pattern. Once formed, a phase bubble shrinks as if it had a
surface tension, and disappears in tens to hundreds of cycles. We find that there is an oscillatory momentum
transfer across a kink, and the shrinking is caused by a net collisional momentum inward across the boundary
enclosing the bubble. At increasing acceleration amplitudes, the patterns evolve into randomly moving laby-
rinthian kinks (spatiotemporal chapsWe observe in the simulations th&3 and f/6 subharmonic patterns
emerge as primary instabilities, but that they are unstable to the undulation of the layer. Our experiments
confirm the existence of transieft3 andf/6 patterns.
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[. INTRODUCTION acceleration due to gravity. We also define the nondimen-
sional depth of the layeN=H/o, whereo is the diameter
Spatiotemporal chaos, where the physical variables vargf the particle. Various subharmonic standing wave patterns
in time and space in a seemingly random way, may ariséave been observed as a functiod'cdndf* [13]; however,
when a spatially extended system is driven far from the prithe transition to spatiotemporal chaos has not previously
mary instability[1]. In some systems, spatiotemporal chaosbeen investigated. In this study, we show that the transition
is understood as a complicated evolution of the amplitude¢o spatiotemporal chaos in granular patterns is due to the
field, and the behavior can be described in terms of the dyintrinsic dynamics of oscillated granular layers: a large
namics of this field2]. In some other systems, the dynamicslength scale undulation of the layer, and an oscillatory mo-
of defects plays a primary role in the transition to spatiotem+mentum transfer across a kink.
poral chaos; cases include RayleighaBed convectiof3,4], The rest of the paper is organized as follows. Section I
electrohydrodynamic convectidb], chemical pattern$6], presents the methods in the simulation and the experiment.
and Faraday instabilitieg7]. Several mathematical models Kinks, phase bubbles, and randomly moving labyrinths are
have been proposed to describe the transition to spatiotendlescribed in Sec. Ill. In Sec. IV a large length scale undula-
poral chaos in spatially extended physical systems, includingjon of the layer and its relation to the nucleation of a phase
amplitude chao$8], phase turbulencf9], defect-mediated bubble is described. Section V discusses how a phase bubble
turbulencg10,11], and invasive defectsl 2], but the under- shrinks and disappears. In Sec. VI, the prediction and obser-
standing is still far from complete. vation of transient/3 andf/6 patterns are presented, and the
In this paper, we study patterns around the transition fronpaper is concluded in Sec. VII.
the f/4 subharmonic hexagonal pattern to spatiotemporal
chaos in granular layers with large aspect rdtiéH= 10, Il. METHODS
whereL is the characteristic horizontal size of the layer, and
H is the depth of the lay@r The layers are subject to a
sinusoidal oscillation in the direction of gravity. The oscilla-  In the absence of well-validated macroscopic governing
tion is characterized by two nondimensional control paramequations for vertically oscillated granular layers, current
eters,I'=47%f2A/g andf* =f/H/g, whereA is the ampli-  theoretical investigation proceeds at a more basic level, that
tude of the oscillation,f=1/T is the frequency of the of individual particles. Bizoret al.[14] developed an event-
oscillation, T is the period of the oscillation, ang is the  driven inelastic hard sphere molecular dynamics simulation
of this system, by implementing the collision operators in
Ref. [15]. This collision model conserves both linear and

A. Numerical simulation
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=(v,—V,)-f1,, Wheref,=(r;—r,)/|r;—r,|. The accurate ' T randomly moving labyrinths
form of e(v,,) is not known; it was assumed thefv,) =1 8 unopored +_Phasebubbies (disordered
—Bv*for v, less than a crossover velocity, ande(v,) ’
=gy otherwise. The value d8 was set to make(v,) con-
tinuous atv,=v.. Here we use .= \go ande,=0.7. The 6r
simulation results are not sensitive to the forme¢f,,) for 5t

v,<v.. The tangential impulse is given by a coefficient of

friction w times the normal impulse, with a cutoff corre- 4 hexagans (f2) ]
sponding to the crossover from a sliding contact to a rolling | squares (/2) stripes (f12) 1

exagons (f/4) |

stripes (f/4}

contact. The crossover ratio of the relative surface velocity T

after the collision to that of before the collisior,8., was . , e , .
set to—0.35 as suggested in R¢L5], andu was set to 0.5. 0.2 0.4 0.8 08 1
The values of these parameters were chosen to fit the wave- f

length of the pattern obtained in the experiments with lead FIG. 1. Phase diagram obtained from an experiment with bronze
particles, for three different control parameter sets. TheSSarticles of diameterr=165xm and nondimensional deptN
fitting parameters reproduced the observed patterns quantita-s iy a circular container with diametér=770c, showing par-
tively throughout the control parameter sp4td]. The col- ticularly the details fol”>7.0. Solid lines denote the transitions for
lisions between the grains and the container were treated iRcreasingl’, while the dotted lines denote decreasihg

the same way as the collisions between grains. The mass of

the container was assumed to be infinitely large compared tge phase diagram in Fig. 1 that shows the details above the

that of the granular layer. _ _ _ f/4 subharmonic hexagonal pattern regime, which is the fo-
We performed three types of simulatiort$) two dimen-  ¢ys of the current study.

sional (2D), (2) quasi-2D, and3) 3D. We simulated a 2D

(Figs. 3 and 1por quasi-2D layer as vertical cross section of ) _ _ _

a 3D layer. A quasi-2D layer is a 3D layer whose dimension A. Single inelastic ball model and temporal dynamics

in one direction is short enoudks 100) to be homogeneous of the layer

in that direction; these simulations run much faster than fully  Much of the dynamics of the patterns in this system can
3D simulations, yet yield the same statistical informationpe understood from the single inelastic ball mddd,17. In
[Figs. 7, 8, and 1®)]. We performed simulations of 3D lay- this section we review the results of this model in ff&and

ers of square shape with horizontal periodic boundary conf/4 patterns regime. The single ball model is a one-
dition [Fig. 11(b)] and of 3D layers of cylindrical shape with dimensional model of the oscillated granular layer, which
side wall, when we compare with the experime(f&s. 4  approximates the center of mass of the layer as a completely

and 9. inelastic ball €=0) on an oscillating plate.
For I'>1, the magnitude of the acceleration of the con-
B. Experiment tainer exceedg during a fraction of the cycle, so that the

Experiments were conducted with vertically oscillatedlayer loses contact with the container when the plate’s accel-

layers of granular material consisting of spherical bronzefration becomes-g, and then the layer makes a free flight

particles of mean diameter 168m (spherical lead particles until colliding with the container later. In thé/2 square-
of diameter 165um were used only for Fig.)1 The nondi- stripe pattern regime, the flight time of the layer is a fraction

mensional depth of the layeN, was in the range of 5—15 of the oscillation periodr, and the layer leaves and hits the
and the aspect ratio/H ranged from 40 to 150. Both circu- Container every cyclgrig. 2@)]. In this regime, the magni-
lar and rectangular containers with various sizes were used fiyd€ of the acceleration of the container at the collision is

the experiments. The container was mounted on an electr¢€SS thang [the ball hits below the dot-dashed line in Fig.

magnetic shaker, and it oscillated sinusoidally in the direc2(@1], and the layer stays on the container until the accelera-

tion of gravity with a single frequency, in the range 10—150tion becomes- g again (the intersection of the dot-dashed
Hz. The value of varied from O to 14. The container was !IN€ and the trajectory of the plateThe layer leaves the
evacuated to a pressure of 4 Pa to reduce the role of intersffontainer at the same phase angle of the oscillation at every
tial gas. The container was encircled by a ring of light-CYCle; hence the take-off velocity or the flight time is single
emitting diodes(LED’s) and the images were taken by a valued..Th|s regime is caIIe.Berllod 1 n=1, whlch means
digital camera mounted above the container. A more detaileff?e Period of the trajectory is single valué@eriod 1) and

description of the experimental apparatus is found in Refth® ball collides with the plate every cycla{1). For I
[16]. =4.0, the trajectory consists of two different flight times,

and the flight time is still a fraction of the peridd Fig. 2(b),

Period 2 n=1]; it corresponds to th&/2 hexagonal pattern.

In this regime, the magnitude of the container acceleration at

collision is larger thary once every other cyclghe ball hits
The phase diagram of the patterns in oscillated granulaabove the dot-dashed line in Fig(b2]. At this collision, the

layers has been reported previouglyd,14,18. We present a layer leaves the container immediately, and the take-off ve-

Ill. PATTERNS AROUND A TRANSITION
TO SPATIOTEMPORAL CHAOS
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(a) T = 3.0, 1/2 square/stripe regime

0 1 2 3 4
(b) T = 4.0, /2 hexagon regime

t=2T

=3T

t

0 1000 200c

FIG. 3. A side view of a 2D layer of afi/4 pattern with two
kinks, obtained in the simulation fdr=6.5, f*=0.8, andN=8.
The middle part and the rest of the layer oscillat®ut of phase,
and phase discontinuities between these two phase domains are
called kinks(indicated by arrows The containefhorizontal bar at
the bottom is at its minimum height at the phase angle at which
these figures are taken. Horizontal boundary is periodic.

1 2 3
(¢) I' = 6.0, f/4 square/stripe regime

this regime. We found transietit3 andf/6 patterns in this
study (see Sec. Vil

Since the layer collides with the container every other
cycle forI'>4.5, domainsr out of phase may coexist in the
layer. When these opposite phase domains coexist, there is a
phase discontinuity line defect between the adjacent phase
domains, which we call a kink16] (two sides of a phase

FIG. 2. Temporal trajectory of a completely inelastic ball ( discontinuity.defect in thé/2 hexagonal pattern regime are
=0) on an oscillating plate, which models the trajectory of the N0t at opposite phases, and this defect is not a)kilmkthe
center of mass of the layer. The solid sinusoidal curve is the trajeceXPeriments, kinks are created by inhomogeneous initial
tory of the plate. The ball leaves the plate when the acceleration gfonditions or external perturbations such as side wall friction
the plate becomes-g; i.e., where the horizontal dot-dashed line O tilt of the container; see Sec. IV. A sequence of féh
intersects with the trajectory of the ball. If the ball collides with the pattern with kinks obtained from a 2D simulation is shown in
plate above the dot-dashed lifia (b) and (d)] it leaves the plate Fig. 3, where one domain has fully developed a pattern, and
immediately. the other is nearly flatsee Ref[18]).

time (V/T)

locity and flight time are smaller than those of the other B. Phase bubbles and randomly moving labyrinths

cycles, in which the ball stays on the container until the As I is increased further from th&4 hexagonal pattern
acceleration of the container becomeg. regime, the layer exhibits spatiotemporal chaos, which is not
For values ofl" above 4.5, the flight time of the layer included in the single ball model. Snapshots obtained from
exceedsT, and the layer hits the container once every othethe experiments and simulations of this regime are shown in
cycle. In this regime, the layer can hit the container either orfig. 4.
odd cycles or on even cycles; the trajectory becomes degen- As I' is increased above a critical vallg,, in the f/4
erate (the trajectory in thef/2 hexagonal pattern regime is hexagonal pattern regime, a small localized region spontane-
also degenerate, and fd2 hexagonal pattern can have a ously changes its phase angle, and this region becomes en-
phase discontinuity defect, which is different from a Kink closed by a kink. We call this localized region a phase
The trajectory of single inelastic ball in tHé4 square-stripe  bubble; see Figs.(d) and 4d). Phase bubbles sudderin
pattern regime I{=5.5) is shown in Fig. @) (Period 1, n  one cycl¢ pop up at random locations, and they shrink and
=2). WhenT is increased to 6.5, the trajectory of the layer disappear over several tens to hundreds of cycles. The nucle-
consists of longer and shorter flight times, and a bifurcatioration rate increases with, and the decay time depends on
to the f/4 hexagonal pattern occufFig. 2(d), Period 2 n  the control parameters and the initial sidg,, varies with
=2]. At I'~8.0, another bifurcation t®eriod 1andn=3 the depth of the layer and the material used; it is 7.5 in the
state occurs, which corresponds td/8 flat pattern; how- experiment with bronze particles adi=5, and is 7.1 in
ever, thef/3 flat pattern has not been observed before, andhyers of lead particles witN=5, in three dimensions. In the
the layer has been known to exhibit spatiotemporal chaos isimulations we find that the value &f,, is a few percent
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EXPERIMENTS SIMULATIONS ously nucleated even without side wall friction or any other
£/4 hexagonal pattern external perturbation, while kinks for 49°<T',;, are never
created spontaneously without an external perturbation.

As T is further increased, the nucleation rate of phase
bubbles increases faster than the decay rate, and the layer
eventually exhibits spatiotemporal chaos in the form of ran-
domly moving labyrinths[Figs. 4e) and 4f)]. Note that
there are a few kinks of closed form; i.e., phase bubbles. In
this regime, labyrinthian kinks move around in the container
in a seemingly random fashion. Each phase domain of laby-
rinths collides with the container every other cycle, and an
f/4 subharmonic pattern is superposed on it. The layer be-
havior does not show any qualitative difference uplto
~14, the highest value investigated in the experiment.

As a phase bubble shrinks, it becomes more circular, as
though it had a surface tension. This behavior is more clearly
observed with phase bubbles in the flat pattern regime,
because there is no superposed pattern. Phase bubbles are not
nucleated spontaneously fb<I",,, but we can make them
from initial conditions with inhomogeneous phase, by sud-
denly decreasind’ from the randomly moving labyrinths
regime to thef/2 flat pattern regime. Such phase bubbles in
: the f/2 flat pattern regime are shown in Fig. 5. See RE8).
Randomly moving labyrinths A kink acts on the pattern as if it were a boundary, and the

_ pattern tries to rotate perpendicular to the kink. These
UIPE S

“boundaries” of the layer have irregular shape; a well-
ordered hexagonal pattern does not form in the phase bubble
regime because phase bubbles break the long range order of
the pattern[Figs. 4c) and 4d)]. Pattern selection is also
affected by the size of a phase bubble, or the width of a
phase domain in the randomly moving labyrinths regime be-
cause of the “boundary condition” of the pattern imposed by
the kink. When a phase bubble is larger than the wavelength
of the hexagonal pattern, the phase bubble ha§/4amex-
agonal pattern superposed on it. Otherwisef/drstripe pat-
FIG. 4. Top views obtained from the experiments, and the meaiiern is superposed because it is the only pattern that can fit in
height as a function of the position obtained from 3D simulations.such small domains.
In (a) and(c), there is a phase kink near the middle, while there is
not in (b) or (d). Kinks are easily created in the experiment due to IV. NUCLEATION OF PHASE BUBBLES
the side wall friction or tilt of the layer, but they are easily elimi-
nated in the simulation; see Sec. IV. One phase bubble is indicated We find in the simulation that fof" slightly below I,
by a white arrow ir(c); in (d) the phase bubbles are the white areas,the bottom of the layer exhibits an undulation, of which
because they reach their maximum height at this moment and patength scale is much larger than the wavelength of the pat-
terns superposed on them are nearly flat. The gray scale in thern. In this section, we discuss how the undulation leads to
experimental images indicates the intensity of the reflected lightthe nucleation of phase bubbles.
which is a measure of the gradient of the surface. The gray scale in In the f/4 hexagonal pattern and the phase bubble regime,
the simulation images i2)(x,y), increasing from black to white, the temporal dynamics of the layer is sensitive to a small
where(F)(x,y) is an averaged value &fover the particles located change in the flight time. This is the case also in the single
at (x.y);(z)(x,y) is called the mean height field. A circular con- pa|| model; in thef/4 hexagonal pattern regime, the ball
tainer of diametel =847 is used in the experiments, and a cir- jmediately leaves the container at every other collision, so
cular container of. =294 is simulated. The parameterB,(*,N)  {hat the instantaneous velocity of the container at this colli-
are(a (7.1, 1.0, 10, (b) (7.0, 0.85, 8, (c) (7.3, 1.0, 10, () (7.2, gjon pecomes the take-off velocity of the ball. Thus, if the
0.85, 9, (¢) (8.0, 1.2, 13, and(f) (8.9, 0.85, 8. velocity is changed slightly and the flight time is increased,
the take-off velocity at the next flight becomes smaller; this
smaller in 2D or quasi-2D layers than in 3D. A phase bubblevelocity may be too small for the ball to fly over the con-
is not just a defect in thé/4 hexagonal pattern of this sys- tainer during the following two cycles, so that the ball col-
tem; it arises due to an inherent instability of the oscillatedides with the container in the very next cydl€ig. 6). In a
granular layer(see Sec. Y. Phase bubbles are spontane-real layer, the flight time has some fluctuation due to the
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t=0

FIG. 5. A sequence of phase
bubbles in anf/2 flat pattern, ob-
tained in the experiment. The
bubbles shrink as if they had a
surface tension. To create these
phase bubbles]" was suddenly
decreased from 9.0 to thig2 flat
pattern regime, I'=4.5 (f*
=0.6). Experimental setup is the
same as in Fig. 1. 4004000
portion of the layer is shown.

undulation; the mechanism in Fig. 6 will create a phasdayer and has the same wavelength as the top; PSD’s have

bubble when the undulation is big enougtig. 7). peaks only at the wavelength of the pattern and its subhar-
The power spectral densitid®SD’9 of the top and the monics.
bottom of a layer for values df slightly below I, show The nucleation rate of phase bubbles monotonically in-

that another peak with small wave numbers appear$’ as creases withl; we hypothesize that the amplitude or the
approache$ ,;, (Fig. 8). For smalled” (I'<6.5 for this casg  growth rate of the undulation increases withAbove some
the shape of the bottom of the layer is slaved to the top of thggjue of I (>Tpp), the nucleation rate exceeds the decay
rate, and phase bubbles or kinks accumulate in the layer until
each phase domain reaches the shortest length scale that can-
\ D not have another kink in it; i.e., this sets the width of the
labyrinths. As a result, the layer is filled with a superposition
Y\ of phase bubbles that connect to one another, forming non-
: \/\ closed kinks. We propose that the randomly moving laby-
rinth pattern results from the above mechanism, i.e., ran-
8 12 domly moving labyrinths may be understood as a
“saturated” state of phase bubbles.

FIG. 6. Sensitivity of the trajectory to small perturbations is 'There are two more mec;hamsr_ns respongple for the cre-
illustrated by perturbeddashed ling and unperturbedsolid ling ~ &tion of phase bubbles or kink&) side wall friction and2)
trajectories of a completely inelastic ball in thét hexagonal pat-  tilt of the layer. In an infinitely extended layer without side
tern regime ['=7.0). For the perturbed trajectory, we increased theWalls, kinks are formed only by the undulation of the layer,
initial take-off velocity by 3% to delay the collision. At the next Or nucleation of phase bubbles, if the layer is perfectly level.
collision (indicated by an arroyy the perturbed ball collided with In the simulation, side walls are easily eliminated by impos-
the container because its take-off velocity was too small, and iténg horizontal periodic boundary conditions; however, the
trajectory became out of phase with that of unperturbed one. layer size is always finite in the experiment, and the side wall

7
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W wave number x ¢
FIG. 8. Power spectral densiti€®SD’y of the top and the
T bottom of a quasi-2D layer fdf =6.6, f* =0.9, andN=6, obtained

t= |10T . , in simulations of a quasi-2D layer of size 1008 100 having more

| ' ' | than 50 wavelengths; there is an additional p@aklicated by an
W arrow) at a small wave number, as well as the primary peaks at the
Wh\f wave number of the patter@t ko=2mao/\, whereX is the wave-

0 500 1206 length of the pattemand at X,. I'p,=6.7 for this simulation.
PSD’s were determined when the amplitude of the pattern was fully
(b)100 : ! ! ! developed, just before the layer collided with the container.

mechanism of the creation of kinks for 4% <I',;, in the
experiment.

0 2T 4T 6T 8T 10T 12T

FIG. 7. () A sequence of side views of a quasi-2D layer show- V. DYNAMICS OF A PHASE BUBBLE
ing the nucleation of a phase bubble arolB)dbtained in a simu-
lation of a quasi-2D layer of size 26< 100, for I'=7.2, f*
=0.9, andN=6. (b) The trajectories of the center of mass at two

horizontal locationsA and B in (a) as a function of time. The this happens. . . .
sinusoidal function shown ifb) is the trajectory of the plate of the When the layer collides with the plate, a density wave

container. Att=0 in (a), the bottom of the layer has a short length fOrms and propagates across the boundary of a phase bubble
scale deformation slaved to the pattern on the surface of the layef@ KinK). This density wave initiates a collisional momentum
This undulation at the bottom grows, as shown in the next twotransfer in the horizontal as well as in the vertical direction,
successive frames i@) [t=4T and 6T in (b)]. At t=6T, the col-  across a kinkFig. 9). A sequence of side views of a kink in
lision of B is delayed due to the undulation; at this collision, a @ 2D layer is in Fig. 10, which shows the relation for the
portion of the layer around collides with the container when the density wave to the momentum transfer.tAt0 in Fig. 10,
plate nearly reaches its maximum height, and the take-off velocitthe left half of the layer collides with the plat@orizontal
becomes too small to fly the next two cycles over the container. Adar and is pushed up. It becomes compact and nearly static
a result,B collides with the container at the very next cycletat with respect to the plate, acting as if it were a part of the
~7T, and it becomes nearly out of phase with the rest of the container. At this moment, the rest of the layer is still falling
layer. This mechanism is the same as that in Fig. 6. and is dilated. The two parts of the layer interact at the kink,
and a density wave forms at the interface due to the large
density gradient. The density wave propagates toward the
effect cannot be completely eliminated. In the experimentdilated part until the compact part loses contact with the
the friction due to the side walls disturbs the oscillatory mo-plate. The density wave drives a collisional momentum
tion of the layer, which often creates kinks. This effect be-transfer and pushes the interface toward the dilated(gzet
comes more and more importantlass increased. There are kink is shifted rightward at=1.2T compared to its earlier
some phase bubbles in contact with the side wall in Figslocation att=0). In the next cycle, the same process occurs
4(c) and 4d), which are kinks created by the side wall fric- in the opposite direction, and the kink is pushed back to its
tion. In the randomly moving labyrinths regime, the side walloriginal position(not shown in Fig. 10 provided that the
effect is one of the major reasons for the decay/8for f/6  phase difference is exacthty (then both parts of a 2D layer
transient patterngssee Sec. VI In addition to the above ef- are symmetric As a result, the momentum flux across a kink
fect, tilt of the container also creates kinks. This is the mainin a 2D or quasi-2D layer oscillates symmetrically with a

Once formed, a phase bubble shrinks as if it had a surface
tension, and then disappedisg. 5. We now discuss why
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FIG. 9. (a) Horizontal momentum fielej\/pxz+ pyz)(x,y), which has its maximum valugdicated whit¢ along the boundary of phase
bubbles; there is a significant momentum flux perpendicular to the boufttierkink). (b) Vertical momentum fieldp,)(x,y), black being
the maximum downward, and white being the maximum upward. The fluctuation in vertical mothixesh aregsis due to the large
scale undulation of the layer, discussed in Sec. IV. These are obtained from the same simulation data asdn Fig. 4

period of 2T, with no net translational motion; thus a phasetransfer across a kink in a 3D layer is the same as in a 2D or
bubble in a 2D or quasi-2D layer never shrinks but onlyquasi-2D layer; however, in a 3D layer, there is a geometric
oscillates symmetricalljFig. 11(a)]. effect that is absent in a 2D or quasi-2D layer: the two sides
The mechanism of the density wave and the momentunaf a kink are not symmetric unless the kink is straight. As the
particles at the front of the density wave are nearly static
with respect to the plate, the momentum flux is roughly pro-
portional to the number of particles at the front of the density
wave and the velocity of the container. For a kink with non-
zero local curvature, the number of particles at the front of
the density wave for the two successive cycles are different,
even if the two sides of the kink are exacttyout of phase.
Thus the momentum transfer in one direction is always
larger than that of the other. This leads to an asymmetric
momentum transfer, or an asymmetric oscillatory motion of a
kink. Consequently, the total net momentum flux across the
boundary of a phase bubble over a multiple af & always
inward, because its boundary is a kink of a closed shape. As
a result, a phase bubble shrinks and disappears. An asymmet-
ric oscillation of a boundary of a phase bubble is shown in
Fig. 11(b). The difference in the numbers of particles at the
interface of the density wave for the two consecutive cycles
is approximately proportional to the local curvature of the
kink. Thus, the speed of a kink is roughly proportional to the
local curvature, leading to an effective surface tension.
There are other mechanisms driving the motion of a kink
in the experiment, which are minor compared to the previ-
ously discussed curvature-dependent geometrical effért:
non phase difference effeend (2) the finite mass ratio
effect First, we have assumed in the above discussion that
both sides of a kink are exacthy out of phase; if this were
FIG. 10. A sequence of aff2 flat pattern with a kink, obtained 1Ot the case, the impaf:t from the containe_r fo_r two succes-
from the simulation of a 2D layer fof =5.2, f*=0.6, andN=9.  Sive cycles would be different, and the oscillation of a kink
Each circle corresponds to a particle. The gray scale of the particleyould be asymmetric, even if the local curvature were zero.
indicates the magnitude of the horizontal momentfyg, increas-  This is why a secondary forcing can control the motion of a
ing from black to white. As the layer is pushed up by the plate, astraight kink, as was experimentally observed by Aranson
density wave forms, which initiates a momentum transfer propagatet al. [19]. Second, if the difference in the mass of each
ing rightward(see text for details phase domain of the layer is not negligible compared to mass
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x (o) X (o) 50
FIG. 11. Space-time plots of horizontal moment(pg)(x,t) of a phase bubblés) in a quasi-2Df/2 flat pattern, andb) in a 3D f/2 flat

pattern(cross section along the diameter of a phase bybble values increase from black to white, black being the maximum leftward and

white being the maximum rightward. A phase bubble in a quasi-2D layer oscillates symmetrically, while in a 3D layer a bubble oscillates

asymmetrically, shrinks and disappeérglicated by an arroyv A quasi-2D layer of size 180X 100 is used for(a), and the phase bubble

in (b) was created by decreasiligirom 8.5 to 5.2;f* =0.6 andN=6 for both.

of the container, the impact by the container on both domaing, the experiment, a kink in th&/2 flat pattern regime even-
of the layer are different, and a net translational motion of aually travels to the center of the container, until the impacts
kink is induced, even if it has zero local curvature and thefrom the container on both phase domains are balanced; it
phase difference ig. We call thisthe finite mass ratio effect was observed in Ref$16,19. This effect is absent in the

t=0 t=36T

FIG. 12. A sequence of a tran-
sientf/3 flat pattern obtained from
the experiment. The friction due
to the side wall creates a kink,
which propagates to the center of
the container in the radial direc-
tion (the same mechanism of the
shrinking of a phase bubblend
destroys thd/3 flat patternI” was
suddenly increased from below
the onset, about 2.0 to 7.§*
=0.94 andN=6. The experiment
was done with the same particles
as in Fig. 1, and.=847c.
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FIG. 13. A sequence of a tran-
sient f/6 pattern, obtained from
the experiment. The undulation of
the layer creates kinks in the
middle of the layer, which de-
stroys thef/6 pattern.I" was sud-
denly increased from 2.0below
pattern onset to 10(f*=1.2 and
N=6). The experiment was done
with the same particles), andL
as in Fig. 13, and a part of the
layer of size 256x2500 is
shown.

simulation, because the mass of the container is assumed where the initialn is 1. This model predicts a bifurcation
be infinitely large compared to the mass of the layer. from an f/4 to anf/3 state(Period 1, n=3) at aroundI’
=8.0; however, in the experiments, the cascade of bifurca-
tion stops an=2.

We discussed how the undulation of the layer leads to the

Until now, no standing wave pattern has been observeducleation of phase bubbles in Sec. IV. If the undulation of
above thef/4 hexagonal pattern regime in the phase diagramhe layer could be avoided, we expect tli# flat andf/6
in Fig. 1. In this section we present the observation offtfde  square-stripe patterns would exist. To test this conjecture, we
flat andf/6 square-stripe patterns. These patterns were foungerformed a series of numerical simulations of a small layer
first in the simulations, which motivated the experiments. We(100-x 100 and 2@X200 with N=6) in the randomly
start the discussion with the single ball model. moving labyrinths regime forl(,f*)=(8-11,0.8—1.0), us-

The single ball model predicts an infinite cascade of bi-jing periodic horizontal boundary conditions. In these simu-
furcations with increasing natural numberfor increasind”  |ations, we observed that the layer collides with the plate
(there are small chaotic windows alorig but this is not  gyery third cycle, and that the dynamics is stable up to an
important in this discussionFor the granular layers, these 4ot o 1000 cycles: we conclude that if a larger layer fol-

bifurcations correspond to the following patterns: lowed this behaviorf/3 or f/6 subharmonic patterns would

VI. TRANSIENT /3 AND f/6 SUBHARMONIC PATTERNS

F/n flat exist. _
In larger layers, the undulation of the layer cannot be
1 completely avoided, but can be suppressed at least during a
f/(2n) squares-stripes n—n+1, short time by preparing a flat and compact layer as an initial

condition; whenl" is quickly increased from the flat pattern
regime to wheref/3 or f/6 subharmonic patterns are pre-
dicted by the single ball model 8I'=11), anf/3 or /6

l
f/(2n) hexagons
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pattern is found in the simulation. Later these transient patan inherent feature of oscillated granular layers, like the
terns were found in the laboratory experiments as well, astanding wave pattern formation, and cannot be avoided;
Figs. 12 and 13 illustrate. These patterns emerge as the pabove some critical value df in the f/4 hexagonal pattern
mary instability of the layer in this regime, but they are in- regime, the undulation of the layer gives rise to the nucle-
vaded and overtaken by either kinks formed due to the sidation of a phase bubble. The spontaneous nucleation of kinks
wall friction (Fig. 12 or by the undulation of the layéFig.  in vertically oscillated 2D or quasi-2D granular layers for
13). As a result, the domain of these transient patterns graddarge I' has been called “subharmonic instability20] or

ally decreases and is eventually taken over by randomlyarching” [21,22], but the mechanism has not been eluci-
moving labyrinths. These transient patterns last up to severalated. These two phenomena are all essentially phase
hundreds of cycles, depending on the initial condition, con-bubbles in 2D or quasi-2D oscillated granular layers.

trol parameters, and the system size. We also found that a kink of nonzero curvature has a net
translational motion due to the asymmetric collisional mo-
VII. DISCUSSION mentum transfer across a ki8ec. \). The local speed of a

. _kink is roughly proportional to the local curvature; a phase
We have shown that phase bubbles play a critical role irhypple shrinks as if it had a surface tension and then disap-
the transition to spatiotemporal chaos in the patterns formefears, because it is a kink of a closed form. We showed that
by vertically oscillated granular layers. Phase bubbles SPONshrinking of a phase bubble and translational motion of a
taneously form first in theé/4 hexagonal pattern regime as kijnk are essentially the same phenomena.
the acceleratiofh’ is increased. At largdr, the rate of nucle- Finally, based on the understanding of kinks, we predicted

ation of bubbles grows faster than the decay rate, leadingansientf/3 and /6 subharmonic patterns and observed
ultimately to a spatiotemporally chaotic pattern of ra”d°m|ythem(Sec. V).

moving labyrinths. In a qualitatively similar way, the forma-
tion of defects has been found to lead to spiral defect chaos
[4] and to chaos in a model with invasive defeltg]. ACKNOWLEDGMENTS
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