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Phase bubbles and spatiotemporal chaos in granular patterns
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We use inelastic hard sphere molecular dynamics simulations and laboratory experiments to study patterns
in vertically oscillated granular layers. The simulations and experiments reveal thatphase bubblesspontane-
ously nucleate in the patterns when the container acceleration amplitude exceeds a critical value, about 7g,
where the pattern is approximately hexagonal, oscillating at one-fourth the driving frequency (f /4). A phase
bubble is a localized region that oscillates with a phase opposite~differing by p! to that of the surrounding
pattern; a localized phase shift is often called anarching in studies of two-dimensional systems. The simula-
tions show that the formation of phase bubbles is triggered by undulation at the bottom of the layer on a large
length scale compared to the wavelength of the pattern. Once formed, a phase bubble shrinks as if it had a
surface tension, and disappears in tens to hundreds of cycles. We find that there is an oscillatory momentum
transfer across a kink, and the shrinking is caused by a net collisional momentum inward across the boundary
enclosing the bubble. At increasing acceleration amplitudes, the patterns evolve into randomly moving laby-
rinthian kinks ~spatiotemporal chaos!. We observe in the simulations thatf /3 and f /6 subharmonic patterns
emerge as primary instabilities, but that they are unstable to the undulation of the layer. Our experiments
confirm the existence of transientf /3 and f /6 patterns.

DOI: 10.1103/PhysRevE.64.0613XX PACS number~s!: 45.70.Qj, 47.54.1r
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I. INTRODUCTION

Spatiotemporal chaos, where the physical variables v
in time and space in a seemingly random way, may a
when a spatially extended system is driven far from the
mary instability@1#. In some systems, spatiotemporal cha
is understood as a complicated evolution of the amplitu
field, and the behavior can be described in terms of the
namics of this field@2#. In some other systems, the dynami
of defects plays a primary role in the transition to spatiote
poral chaos; cases include Rayleigh-Be´nard convection@3,4#,
electrohydrodynamic convection@5#, chemical patterns@6#,
and Faraday instabilities@7#. Several mathematical mode
have been proposed to describe the transition to spatio
poral chaos in spatially extended physical systems, includ
amplitude chaos@8#, phase turbulence@9#, defect-mediated
turbulence@10,11#, and invasive defects@12#, but the under-
standing is still far from complete.

In this paper, we study patterns around the transition fr
the f /4 subharmonic hexagonal pattern to spatiotempo
chaos in granular layers with large aspect ratio~L/H*10,
whereL is the characteristic horizontal size of the layer, a
H is the depth of the layer!. The layers are subject to
sinusoidal oscillation in the direction of gravity. The oscill
tion is characterized by two nondimensional control para
eters,G54p2f 2A/g and f * 5 fAH/g, whereA is the ampli-
tude of the oscillation,f 51/T is the frequency of the
oscillation, T is the period of the oscillation, andg is the
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acceleration due to gravity. We also define the nondim
sional depth of the layer,N5H/s, wheres is the diameter
of the particle. Various subharmonic standing wave patte
have been observed as a function ofG and f * @13#; however,
the transition to spatiotemporal chaos has not previou
been investigated. In this study, we show that the transi
to spatiotemporal chaos in granular patterns is due to
intrinsic dynamics of oscillated granular layers: a lar
length scale undulation of the layer, and an oscillatory m
mentum transfer across a kink.

The rest of the paper is organized as follows. Section
presents the methods in the simulation and the experim
Kinks, phase bubbles, and randomly moving labyrinths
described in Sec. III. In Sec. IV a large length scale undu
tion of the layer and its relation to the nucleation of a pha
bubble is described. Section V discusses how a phase bu
shrinks and disappears. In Sec. VI, the prediction and ob
vation of transientf /3 andf /6 patterns are presented, and t
paper is concluded in Sec. VII.

II. METHODS

A. Numerical simulation

In the absence of well-validated macroscopic govern
equations for vertically oscillated granular layers, curre
theoretical investigation proceeds at a more basic level,
of individual particles. Bizonet al. @14# developed an event
driven inelastic hard sphere molecular dynamics simulat
of this system, by implementing the collision operators
Ref. @15#. This collision model conserves both linear an
angular momentum, but allows energy to be dissipa
through inelastic collisions and surface friction. The norm
coefficient of restitutione(vn) depends on the magnitude o
the normal component of relative colliding velocityvn

Y,
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5(v12v2)• r̂12, where r̂125(r12r2)/ur12r2u. The accurate
form of e(vn) is not known; it was assumed thate(vn)51
2Bvn

3/4 for vn less than a crossover velocityvc , ande(vn)
5e0 otherwise. The value ofB was set to makee(vn) con-
tinuous atvn5vc . Here we usevc5Ags ande050.7. The
simulation results are not sensitive to the form ofe(vn) for
vn,vc . The tangential impulse is given by a coefficient
friction m times the normal impulse, with a cutoff corre
sponding to the crossover from a sliding contact to a roll
contact. The crossover ratio of the relative surface velo
after the collision to that of before the collision,2bc , was
set to20.35 as suggested in Ref.@15#, andm was set to 0.5.
The values of these parameters were chosen to fit the w
length of the pattern obtained in the experiments with le
particles, for three different control parameter sets. Th
fitting parameters reproduced the observed patterns quan
tively throughout the control parameter space@14#. The col-
lisions between the grains and the container were treate
the same way as the collisions between grains. The mas
the container was assumed to be infinitely large compare
that of the granular layer.

We performed three types of simulations:~1! two dimen-
sional ~2D!, ~2! quasi-2D, and~3! 3D. We simulated a 2D
~Figs. 3 and 10! or quasi-2D layer as vertical cross section
a 3D layer. A quasi-2D layer is a 3D layer whose dimens
in one direction is short enough~& 10s! to be homogeneou
in that direction; these simulations run much faster than fu
3D simulations, yet yield the same statistical informati
@Figs. 7, 8, and 11~a!#. We performed simulations of 3D lay
ers of square shape with horizontal periodic boundary c
dition @Fig. 11~b!# and of 3D layers of cylindrical shape wit
side wall, when we compare with the experiments~Figs. 4
and 9!.

B. Experiment

Experiments were conducted with vertically oscillat
layers of granular material consisting of spherical bron
particles of mean diameter 165mm ~spherical lead particles
of diameter 165mm were used only for Fig. 1!. The nondi-
mensional depth of the layer,N, was in the range of 5–15
and the aspect ratioL/H ranged from 40 to 150. Both circu
lar and rectangular containers with various sizes were use
the experiments. The container was mounted on an elec
magnetic shaker, and it oscillated sinusoidally in the dir
tion of gravity with a single frequency, in the range 10–1
Hz. The value ofG varied from 0 to 14. The container wa
evacuated to a pressure of 4 Pa to reduce the role of inte
tial gas. The container was encircled by a ring of ligh
emitting diodes~LED’s! and the images were taken by
digital camera mounted above the container. A more deta
description of the experimental apparatus is found in R
@16#.

III. PATTERNS AROUND A TRANSITION
TO SPATIOTEMPORAL CHAOS

The phase diagram of the patterns in oscillated gran
layers has been reported previously@13,14,16#. We present a
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new phase diagram in Fig. 1 that shows the details above
f /4 subharmonic hexagonal pattern regime, which is the
cus of the current study.

A. Single inelastic ball model and temporal dynamics
of the layer

Much of the dynamics of the patterns in this system c
be understood from the single inelastic ball model@16,17#. In
this section we review the results of this model in thef /2 and
f /4 patterns regime. The single ball model is a on
dimensional model of the oscillated granular layer, whi
approximates the center of mass of the layer as a comple
inelastic ball (e50) on an oscillating plate.

For G.1, the magnitude of the acceleration of the co
tainer exceedsg during a fraction of the cycle, so that th
layer loses contact with the container when the plate’s ac
eration becomes2g, and then the layer makes a free flig
until colliding with the container later. In thef /2 square-
stripe pattern regime, the flight time of the layer is a fracti
of the oscillation periodT, and the layer leaves and hits th
container every cycle@Fig. 2~a!#. In this regime, the magni-
tude of the acceleration of the container at the collision
less thang @the ball hits below the dot-dashed line in Fi
2~a!#, and the layer stays on the container until the accele
tion becomes2g again ~the intersection of the dot-dashe
line and the trajectory of the plate!. The layer leaves the
container at the same phase angle of the oscillation at e
cycle; hence the take-off velocity or the flight time is sing
valued. This regime is calledPeriod 1, n51, which means
the period of the trajectory is single valued~Period 1! and
the ball collides with the plate every cycle (n51). For G
*4.0, the trajectory consists of two different flight time
and the flight time is still a fraction of the periodT @Fig. 2~b!,
Period 2, n51#; it corresponds to thef /2 hexagonal pattern
In this regime, the magnitude of the container acceleratio
collision is larger thang once every other cycle@the ball hits
above the dot-dashed line in Fig. 2~b!#. At this collision, the
layer leaves the container immediately, and the take-off

FIG. 1. Phase diagram obtained from an experiment with bro
particles of diameters5165mm and nondimensional depthN
55, in a circular container with diameterL5770s, showing par-
ticularly the details forG.7.0. Solid lines denote the transitions fo
increasingG, while the dotted lines denote decreasingG.
1-2
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PHASE BUBBLES AND SPATIOTEMPORAL CHAOS IN . . . PHYSICAL REVIEW E65 011301
locity and flight time are smaller than those of the oth
cycles, in which the ball stays on the container until t
acceleration of the container becomes2g.

For values ofG above 4.5, the flight time of the laye
exceedsT, and the layer hits the container once every ot
cycle. In this regime, the layer can hit the container either
odd cycles or on even cycles; the trajectory becomes de
erate~the trajectory in thef /2 hexagonal pattern regime
also degenerate, and af /2 hexagonal pattern can have
phase discontinuity defect, which is different from a kink!.
The trajectory of single inelastic ball in thef /4 square-stripe
pattern regime (G*5.5) is shown in Fig. 2~c! ~Period 1, n
52!. WhenG is increased to 6.5, the trajectory of the lay
consists of longer and shorter flight times, and a bifurcat
to the f /4 hexagonal pattern occurs@Fig. 2~d!, Period 2, n
52#. At G;8.0, another bifurcation toPeriod 1 and n53
state occurs, which corresponds to af /3 flat pattern; how-
ever, thef /3 flat pattern has not been observed before,
the layer has been known to exhibit spatiotemporal chao

FIG. 2. Temporal trajectory of a completely inelastic balle
50) on an oscillating plate, which models the trajectory of t
center of mass of the layer. The solid sinusoidal curve is the tra
tory of the plate. The ball leaves the plate when the acceleratio
the plate becomes2g; i.e., where the horizontal dot-dashed lin
intersects with the trajectory of the ball. If the ball collides with t
plate above the dot-dashed line@in ~b! and ~d!# it leaves the plate
immediately.
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this regime. We found transientf /3 and f /6 patterns in this
study ~see Sec. VI!.

Since the layer collides with the container every oth
cycle forG.4.5, domainsp out of phase may coexist in th
layer. When these opposite phase domains coexist, there
phase discontinuity line defect between the adjacent ph
domains, which we call a kink@16# ~two sides of a phase
discontinuity defect in thef /2 hexagonal pattern regime ar
not at opposite phases, and this defect is not a kink!. In the
experiments, kinks are created by inhomogeneous in
conditions or external perturbations such as side wall frict
or tilt of the container; see Sec. IV. A sequence of anf /4
pattern with kinks obtained from a 2D simulation is shown
Fig. 3, where one domain has fully developed a pattern,
the other is nearly flat~see Ref.@18#!.

B. Phase bubbles and randomly moving labyrinths

As G is increased further from thef /4 hexagonal pattern
regime, the layer exhibits spatiotemporal chaos, which is
included in the single ball model. Snapshots obtained fr
the experiments and simulations of this regime are show
Fig. 4.

As G is increased above a critical valueGpb in the f /4
hexagonal pattern regime, a small localized region sponta
ously changes its phase angle, and this region becomes
closed by a kink. We call this localized region a pha
bubble; see Figs. 4~c! and 4~d!. Phase bubbles suddenly~in
one cycle! pop up at random locations, and they shrink a
disappear over several tens to hundreds of cycles. The nu
ation rate increases withG, and the decay time depends o
the control parameters and the initial size.Gpb varies with
the depth of the layer and the material used; it is 7.5 in
experiment with bronze particles andN55, and is 7.1 in
layers of lead particles withN55, in three dimensions. In the
simulations we find that the value ofGpb is a few percent

c-
of

FIG. 3. A side view of a 2D layer of anf /4 pattern with two
kinks, obtained in the simulation forG56.5, f * 50.8, andN58.
The middle part and the rest of the layer oscillatep out of phase,
and phase discontinuities between these two phase domain
called kinks~indicated by arrows!. The container~horizontal bar at
the bottom! is at its minimum height at the phase angle at whi
these figures are taken. Horizontal boundary is periodic.
1-3
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MOON, SHATTUCK, BIZON, GOLDMAN, SWIFT, AND SWINNEY PHYSICAL REVIEW E65 011301
smaller in 2D or quasi-2D layers than in 3D. A phase bub
is not just a defect in thef /4 hexagonal pattern of this sys
tem; it arises due to an inherent instability of the oscilla
granular layer~see Sec. IV!. Phase bubbles are spontan

FIG. 4. Top views obtained from the experiments, and the m
height as a function of the position obtained from 3D simulatio
In ~a! and ~c!, there is a phase kink near the middle, while there
not in ~b! or ~d!. Kinks are easily created in the experiment due
the side wall friction or tilt of the layer, but they are easily elim
nated in the simulation; see Sec. IV. One phase bubble is indic
by a white arrow in~c!; in ~d! the phase bubbles are the white are
because they reach their maximum height at this moment and
terns superposed on them are nearly flat. The gray scale in
experimental images indicates the intensity of the reflected li
which is a measure of the gradient of the surface. The gray sca
the simulation images iŝz&(x,y), increasing from black to white
where^F&(x,y) is an averaged value ofF over the particles located
at (x,y);^z&(x,y) is called the mean height field. A circular con
tainer of diameterL5847s is used in the experiments, and a c
cular container ofL5294s is simulated. The parameters (G, f * ,N)
are ~a! ~7.1, 1.0, 10!, ~b! ~7.0, 0.85, 8!, ~c! ~7.3, 1.0, 10!, ~d! ~7.2,
0.85, 8!, ~e! ~8.0, 1.2, 15!, and~f! ~8.9, 0.85, 8!.
01130
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ously nucleated even without side wall friction or any oth
external perturbation, while kinks for 4.5,G,Gpb are never
created spontaneously without an external perturbation.

As G is further increased, the nucleation rate of pha
bubbles increases faster than the decay rate, and the
eventually exhibits spatiotemporal chaos in the form of ra
domly moving labyrinths@Figs. 4~e! and 4~f!#. Note that
there are a few kinks of closed form; i.e., phase bubbles
this regime, labyrinthian kinks move around in the contain
in a seemingly random fashion. Each phase domain of la
rinths collides with the container every other cycle, and
f /4 subharmonic pattern is superposed on it. The layer
havior does not show any qualitative difference up toG
;14, the highest value investigated in the experiment.

As a phase bubble shrinks, it becomes more circular
though it had a surface tension. This behavior is more cle
observed with phase bubbles in thef /2 flat pattern regime,
because there is no superposed pattern. Phase bubbles a
nucleated spontaneously forG,Gpb , but we can make them
from initial conditions with inhomogeneous phase, by su
denly decreasingG from the randomly moving labyrinths
regime to thef /2 flat pattern regime. Such phase bubbles
the f /2 flat pattern regime are shown in Fig. 5. See Ref.@18#.

A kink acts on the pattern as if it were a boundary, and
pattern tries to rotate perpendicular to the kink. The
‘‘boundaries’’ of the layer have irregular shape; a we
ordered hexagonal pattern does not form in the phase bu
regime because phase bubbles break the long range ord
the pattern@Figs. 4~c! and 4~d!#. Pattern selection is also
affected by the size of a phase bubble, or the width o
phase domain in the randomly moving labyrinths regime
cause of the ‘‘boundary condition’’ of the pattern imposed
the kink. When a phase bubble is larger than the wavelen
of the hexagonal pattern, the phase bubble has anf /4 hex-
agonal pattern superposed on it. Otherwise, anf /4 stripe pat-
tern is superposed because it is the only pattern that can
such small domains.

IV. NUCLEATION OF PHASE BUBBLES

We find in the simulation that forG slightly belowGpb ,
the bottom of the layer exhibits an undulation, of whic
length scale is much larger than the wavelength of the p
tern. In this section, we discuss how the undulation lead
the nucleation of phase bubbles.

In the f /4 hexagonal pattern and the phase bubble regi
the temporal dynamics of the layer is sensitive to a sm
change in the flight time. This is the case also in the sin
ball model; in the f /4 hexagonal pattern regime, the ba
immediately leaves the container at every other collision,
that the instantaneous velocity of the container at this co
sion becomes the take-off velocity of the ball. Thus, if t
velocity is changed slightly and the flight time is increase
the take-off velocity at the next flight becomes smaller; t
velocity may be too small for the ball to fly over the co
tainer during the following two cycles, so that the ball co
lides with the container in the very next cycle~Fig. 6!. In a
real layer, the flight time has some fluctuation due to
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FIG. 5. A sequence of phas
bubbles in anf /2 flat pattern, ob-
tained in the experiment. The
bubbles shrink as if they had
surface tension. To create thes
phase bubbles,G was suddenly
decreased from 9.0 to thef /2 flat
pattern regime, G54.5 (f *
50.6). Experimental setup is th
same as in Fig. 1. 400s3400s
portion of the layer is shown.
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undulation; the mechanism in Fig. 6 will create a pha
bubble when the undulation is big enough~Fig. 7!.

The power spectral densities~PSD’s! of the top and the
bottom of a layer for values ofG slightly below Gpb show
that another peak with small wave numbers appears aG
approachesGpb ~Fig. 8!. For smallerG ~G&6.5 for this case!,
the shape of the bottom of the layer is slaved to the top of

FIG. 6. Sensitivity of the trajectory to small perturbations
illustrated by perturbed~dashed line! and unperturbed~solid line!
trajectories of a completely inelastic ball in thef /4 hexagonal pat-
tern regime (G57.0). For the perturbed trajectory, we increased
initial take-off velocity by 3% to delay the collision. At the nex
collision ~indicated by an arrow!, the perturbed ball collided with
the container because its take-off velocity was too small, and
trajectory became out of phase with that of unperturbed one.
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layer and has the same wavelength as the top; PSD’s h
peaks only at the wavelength of the pattern and its sub
monics.

The nucleation rate of phase bubbles monotonically
creases withG; we hypothesize that the amplitude or th
growth rate of the undulation increases withG. Above some
value of G (.Gpb), the nucleation rate exceeds the dec
rate, and phase bubbles or kinks accumulate in the layer u
each phase domain reaches the shortest length scale tha
not have another kink in it; i.e., this sets the width of t
labyrinths. As a result, the layer is filled with a superpositi
of phase bubbles that connect to one another, forming n
closed kinks. We propose that the randomly moving lab
rinth pattern results from the above mechanism, i.e., r
domly moving labyrinths may be understood as
‘‘saturated’’ state of phase bubbles.

There are two more mechanisms responsible for the
ation of phase bubbles or kinks:~1! side wall friction and~2!
tilt of the layer. In an infinitely extended layer without sid
walls, kinks are formed only by the undulation of the lay
or nucleation of phase bubbles, if the layer is perfectly lev
In the simulation, side walls are easily eliminated by impo
ing horizontal periodic boundary conditions; however, t
layer size is always finite in the experiment, and the side w

e

ts
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effect cannot be completely eliminated. In the experime
the friction due to the side walls disturbs the oscillatory m
tion of the layer, which often creates kinks. This effect b
comes more and more important asG is increased. There ar
some phase bubbles in contact with the side wall in F
4~c! and 4~d!, which are kinks created by the side wall fric
tion. In the randomly moving labyrinths regime, the side w
effect is one of the major reasons for the decay off /3 or f /6
transient patterns~see Sec. VI!. In addition to the above ef
fect, tilt of the container also creates kinks. This is the m

FIG. 7. ~a! A sequence of side views of a quasi-2D layer sho
ing the nucleation of a phase bubble aroundB, obtained in a simu-
lation of a quasi-2D layer of size 200s310s, for G57.2, f *
50.9, andN56. ~b! The trajectories of the center of mass at tw
horizontal locations,A and B in ~a! as a function of time. The
sinusoidal function shown in~b! is the trajectory of the plate of the
container. Att50 in ~a!, the bottom of the layer has a short leng
scale deformation slaved to the pattern on the surface of the la
This undulation at the bottom grows, as shown in the next t
successive frames in~a! @t54T and 6T in ~b!#. At t56T, the col-
lision of B is delayed due to the undulation; at this collision,
portion of the layer aroundB collides with the container when th
plate nearly reaches its maximum height, and the take-off velo
becomes too small to fly the next two cycles over the container
a result,B collides with the container at the very next cycle, at
;7T, and it becomes nearlyp out of phase with the rest of th
layer. This mechanism is the same as that in Fig. 6.
01130
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mechanism of the creation of kinks for 4.5,G,Gpb in the
experiment.

V. DYNAMICS OF A PHASE BUBBLE

Once formed, a phase bubble shrinks as if it had a surf
tension, and then disappears~Fig. 5!. We now discuss why
this happens.

When the layer collides with the plate, a density wa
forms and propagates across the boundary of a phase bu
~a kink!. This density wave initiates a collisional momentu
transfer in the horizontal as well as in the vertical directio
across a kink~Fig. 9!. A sequence of side views of a kink i
a 2D layer is in Fig. 10, which shows the relation for th
density wave to the momentum transfer. Att50 in Fig. 10,
the left half of the layer collides with the plate~horizontal
bar! and is pushed up. It becomes compact and nearly s
with respect to the plate, acting as if it were a part of t
container. At this moment, the rest of the layer is still fallin
and is dilated. The two parts of the layer interact at the ki
and a density wave forms at the interface due to the la
density gradient. The density wave propagates toward
dilated part until the compact part loses contact with
plate. The density wave drives a collisional momentu
transfer and pushes the interface toward the dilated part~the
kink is shifted rightward att51.2T compared to its earlier
location att50!. In the next cycle, the same process occ
in the opposite direction, and the kink is pushed back to
original position~not shown in Fig. 10!, provided that the
phase difference is exactlyp ~then both parts of a 2D laye
are symmetric!. As a result, the momentum flux across a ki
in a 2D or quasi-2D layer oscillates symmetrically with

-

er.
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FIG. 8. Power spectral densities~PSD’s! of the top and the
bottom of a quasi-2D layer forG56.6, f * 50.9, andN56, obtained
in simulations of a quasi-2D layer of size 1000s310s having more
than 50 wavelengths; there is an additional peak~indicated by an
arrow! at a small wave number, as well as the primary peaks at
wave number of the pattern~at k052ps/l, wherel is the wave-
length of the pattern! and at 2k0 . Gpb56.7 for this simulation.
PSD’s were determined when the amplitude of the pattern was f
developed, just before the layer collided with the container.
1-6



e

PHASE BUBBLES AND SPATIOTEMPORAL CHAOS IN . . . PHYSICAL REVIEW E65 011301
FIG. 9. ~a! Horizontal momentum field̂Apx
21py

2&(x,y), which has its maximum values~indicated white! along the boundary of phas
bubbles; there is a significant momentum flux perpendicular to the boundary~the kink!. ~b! Vertical momentum field̂pz&(x,y), black being
the maximum downward, and white being the maximum upward. The fluctuation in vertical momenta~blackish areas! is due to the large
scale undulation of the layer, discussed in Sec. IV. These are obtained from the same simulation data as in Fig. 4~d!.
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period of 2T, with no net translational motion; thus a pha
bubble in a 2D or quasi-2D layer never shrinks but on
oscillates symmetrically@Fig. 11~a!#.

The mechanism of the density wave and the momen

FIG. 10. A sequence of anf /2 flat pattern with a kink, obtained
from the simulation of a 2D layer forG55.2, f * 50.6, andN59.
Each circle corresponds to a particle. The gray scale of the part
indicates the magnitude of the horizontal momentumupxu, increas-
ing from black to white. As the layer is pushed up by the plate
density wave forms, which initiates a momentum transfer propa
ing rightward~see text for details!.
01130
m

transfer across a kink in a 3D layer is the same as in a 2D
quasi-2D layer; however, in a 3D layer, there is a geome
effect that is absent in a 2D or quasi-2D layer: the two sid
of a kink are not symmetric unless the kink is straight. As t
particles at the front of the density wave are nearly sta
with respect to the plate, the momentum flux is roughly p
portional to the number of particles at the front of the dens
wave and the velocity of the container. For a kink with no
zero local curvature, the number of particles at the front
the density wave for the two successive cycles are differ
even if the two sides of the kink are exactlyp out of phase.
Thus the momentum transfer in one direction is alwa
larger than that of the other. This leads to an asymme
momentum transfer, or an asymmetric oscillatory motion o
kink. Consequently, the total net momentum flux across
boundary of a phase bubble over a multiple of 2T is always
inward, because its boundary is a kink of a closed shape
a result, a phase bubble shrinks and disappears. An asym
ric oscillation of a boundary of a phase bubble is shown
Fig. 11~b!. The difference in the numbers of particles at t
interface of the density wave for the two consecutive cyc
is approximately proportional to the local curvature of t
kink. Thus, the speed of a kink is roughly proportional to t
local curvature, leading to an effective surface tension.

There are other mechanisms driving the motion of a k
in the experiment, which are minor compared to the pre
ously discussed curvature-dependent geometrical effect~1!
non-p phase difference effectand ~2! the finite mass ratio
effect. First, we have assumed in the above discussion
both sides of a kink are exactlyp out of phase; if this were
not the case, the impact from the container for two succ
sive cycles would be different, and the oscillation of a ki
would be asymmetric, even if the local curvature were ze
This is why a secondary forcing can control the motion o
straight kink, as was experimentally observed by Arans
et al. @19#. Second, if the difference in the mass of ea
phase domain of the layer is not negligible compared to m

es

a
t-
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FIG. 11. Space-time plots of horizontal momentum^px&(x,t) of a phase bubble~a! in a quasi-2Df /2 flat pattern, and~b! in a 3D f /2 flat
pattern~cross section along the diameter of a phase bubble!. The values increase from black to white, black being the maximum leftward
white being the maximum rightward. A phase bubble in a quasi-2D layer oscillates symmetrically, while in a 3D layer a bubble o
asymmetrically, shrinks and disappears~indicated by an arrow!. A quasi-2D layer of size 100s310s is used for~a!, and the phase bubble
in ~b! was created by decreasingG from 8.5 to 5.2;f * 50.6 andN56 for both.
in
f

th

-
cts
d; it
of the container, the impact by the container on both doma
of the layer are different, and a net translational motion o
kink is induced, even if it has zero local curvature and
phase difference isp. We call thisthe finite mass ratio effect.
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In the experiment, a kink in thef /2 flat pattern regime even
tually travels to the center of the container, until the impa
from the container on both phase domains are balance
was observed in Refs.@16,19#. This effect is absent in the
-

,
f

-
e

s

FIG. 12. A sequence of a tran
sient f /3 flat pattern obtained from
the experiment. The friction due
to the side wall creates a kink
which propagates to the center o
the container in the radial direc
tion ~the same mechanism of th
shrinking of a phase bubble! and
destroys thef /3 flat pattern.G was
suddenly increased from below
the onset, about 2.0 to 7.8;f *
50.94 andN56. The experiment
was done with the same particle
as in Fig. 1, andL5847s.
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FIG. 13. A sequence of a tran
sient f /6 pattern, obtained from
the experiment. The undulation o
the layer creates kinks in the
middle of the layer, which de-
stroys thef /6 pattern.G was sud-
denly increased from 2.0~below
pattern onset!, to 10 ~f * 51.2 and
N56!. The experiment was done
with the same particles,N, andL
as in Fig. 13, and a part of the
layer of size 250s3250s is
shown.
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simulation, because the mass of the container is assume
be infinitely large compared to the mass of the layer.

VI. TRANSIENT f Õ3 AND f Õ6 SUBHARMONIC PATTERNS

Until now, no standing wave pattern has been obser
above thef /4 hexagonal pattern regime in the phase diagr
in Fig. 1. In this section we present the observation of thef /3
flat andf /6 square-stripe patterns. These patterns were fo
first in the simulations, which motivated the experiments.
start the discussion with the single ball model.

The single ball model predicts an infinite cascade of
furcations with increasing natural numbern, for increasingG
~there are small chaotic windows alongG, but this is not
important in this discussion!. For the granular layers, thes
bifurcations correspond to the following patterns:
01130
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where the initialn is 1. This model predicts a bifurcatio
from an f /4 to an f /3 state~Period 1, n53! at aroundG
58.0; however, in the experiments, the cascade of bifur
tion stops atn52.

We discussed how the undulation of the layer leads to
nucleation of phase bubbles in Sec. IV. If the undulation
the layer could be avoided, we expect thatf /3 flat and f /6
square-stripe patterns would exist. To test this conjecture
performed a series of numerical simulations of a small la
~10s310s and 20s320s with N56! in the randomly
moving labyrinths regime for (G, f * )5(8 – 11,0.8 – 1.0), us-
ing periodic horizontal boundary conditions. In these sim
lations, we observed that the layer collides with the pl
every third cycle, and that the dynamics is stable up to
order of 1000 cycles; we conclude that if a larger layer f
lowed this behavior,f /3 or f /6 subharmonic patterns woul
exist.

In larger layers, the undulation of the layer cannot
completely avoided, but can be suppressed at least duri
short time by preparing a flat and compact layer as an in
condition; whenG is quickly increased from the flat patter
regime to wheref /3 or f /6 subharmonic patterns are pr
dicted by the single ball model (8&G&11), an f /3 or f /6
1-9



a
a
p

n-
id

d
m
e
on

i
e

o
s

in
ly

a-
a

tio
in
ic

al
v

s

the
ed;

le-
inks
or

ci-
ase

net
o-

se
ap-

that
f a

ted
ed

e-
s-
rch
e-

MOON, SHATTUCK, BIZON, GOLDMAN, SWIFT, AND SWINNEY PHYSICAL REVIEW E65 011301
pattern is found in the simulation. Later these transient p
terns were found in the laboratory experiments as well,
Figs. 12 and 13 illustrate. These patterns emerge as the
mary instability of the layer in this regime, but they are i
vaded and overtaken by either kinks formed due to the s
wall friction ~Fig. 12! or by the undulation of the layer~Fig.
13!. As a result, the domain of these transient patterns gra
ally decreases and is eventually taken over by rando
moving labyrinths. These transient patterns last up to sev
hundreds of cycles, depending on the initial condition, c
trol parameters, and the system size.

VII. DISCUSSION

We have shown that phase bubbles play a critical role
the transition to spatiotemporal chaos in the patterns form
by vertically oscillated granular layers. Phase bubbles sp
taneously form first in thef /4 hexagonal pattern regime a
the accelerationG is increased. At largerG, the rate of nucle-
ation of bubbles grows faster than the decay rate, lead
ultimately to a spatiotemporally chaotic pattern of random
moving labyrinths. In a qualitatively similar way, the form
tion of defects has been found to lead to spiral defect ch
@4# and to chaos in a model with invasive defects@12#.

We have investigated the mechanism of the nuclea
and the dynamics of phase bubbles and randomly mov
labyrinths, using inelastic hard sphere molecular dynam
simulations and experiments. We have found that a vertic
oscillated granular layer has a large scale undulation, e
without interstitial gas~Sec. IV!. The undulation constitute
-
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-
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an inherent feature of oscillated granular layers, like
standing wave pattern formation, and cannot be avoid
above some critical value ofG in the f /4 hexagonal pattern
regime, the undulation of the layer gives rise to the nuc
ation of a phase bubble. The spontaneous nucleation of k
in vertically oscillated 2D or quasi-2D granular layers f
large G has been called ‘‘subharmonic instability’’@20# or
‘‘arching’’ @21,22#, but the mechanism has not been elu
dated. These two phenomena are all essentially ph
bubbles in 2D or quasi-2D oscillated granular layers.

We also found that a kink of nonzero curvature has a
translational motion due to the asymmetric collisional m
mentum transfer across a kink~Sec. V!. The local speed of a
kink is roughly proportional to the local curvature; a pha
bubble shrinks as if it had a surface tension and then dis
pears, because it is a kink of a closed form. We showed
shrinking of a phase bubble and translational motion o
kink are essentially the same phenomena.

Finally, based on the understanding of kinks, we predic
transient f /3 and f /6 subharmonic patterns and observ
them ~Sec. VI!.
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