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Velocity distributions and correlations in homogeneously heated granular media
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We compare the steady state velocity distributions from our three-dimensional inelastic hard sphere molecu-
lar dynamics simulation for homogeneously heated granular media, with the predictions of a mean field-type
Enskog-Boltzmann equation for inelastic hard sphgfe®. C. van Noije and M. H. Ernst, Granular Matfier
57 (1998]. Although we find qualitative agreement for all values of density and inelasticity, the quantitative
disagreement approaches40% at high inelasticity or density. By contrast the predictions of the pseudo-
Maxwell molecule mode]J. A. Carrillo, C. Cercignani, and I. M. Gamba, Phys. Rev6£,7700(2000] are
both qualitatively and quantitatively different from those of our simulation. We also measure short-range and
long-range velocity correlations exhibiting nonzero correlations at contact before the collision, and being
consistent with a slow algebraic decay over a decade in the unit of the diameter of the particle, proportional to
r- (@) where 0.2 «<0.3. The existence of these correlations implies the failure of the molecular chaos
assumption and the mean field approximation, which is responsible for the quantitative disagreement of the
inelastic hard sphere kinetic theory.
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[. INTRODUCTION system of granular media requires an external energy source.
In this paper, we investigate the steady state velocity distri-
Granular materials are collections of noncohesive macrobutions and velocity correlations of spatially homogeneous
scopic dissipative particles and are encountered in nature amgganular media subject to a volumetric Gaussian white noise
in the industry[1]. These materials exhibit a wide variety of forcing. This system has been studied by several authors
phenomena depending on the external forcing. The rapif5,6,12,18 as a reference system for the kinetic theory of
granular flow regime, where the collisions are modeled agranular media. In this system, particles collide inelastically,
instantaneous binary inelastic collisions, is reminiscent of @nd execute Brownian motion between collisions; the motion
gas of hard spheres. Thus, a common theoretical approadh analogous to Brownian dynamics of hard sphere suspen-
for this regime as a first order approximation is to model theSion, but here the kinetic energy is dissipated due to the
system by means of the kinetic and the continuum equation§elastic collisions rather than hydrodynamic drag. This sys-
for smooth inelastic hard spheres with a velocity-tem is far from equilibrium, and the steady state velocity
independent coefficient of restitutiof2]. In the kinetic  distribution deviates from the Maxwell-Boltzmai¥B) dis-
theory approach, the mean field-type Boltzmann or Enskogtribution. The velocity distribution of this system was first
Boltzmann equation for inelastic hard spheres is used, anfeoretically studied by van Noije and Err{f], who ob-
most techniques are directly taken from the kinetic theory ofained the approximate solutions to the inelastic hard sphere
a gas of elastic hard spher@. It is known that this formu- Enskog-Boltzmann equation with a Gaussian white noise
lation is a reasonable description for nearly elastic-¢f  forcing. Their results were tested against the direct simula-
<1, wheree is the normal coefficient of restitutiprand  tion Monte Carlo(DSMC) method of the inelastic Enskog-
dilute cases. However, these theoretical models include ag2oltzmann equatiof6], and a good agreement was found; it
proximations such as the truncation of series expansion dionfirmed the accuracy of the approximate analysis of van
hierarchy, and the introduction of equation closure. The disNoije and Ernst, because the validity of the DSMC method
sipative nature of the collision modifies the physics in a nonJelies on the validity of the inelastic Enskog-Boltzmann
trivial way, and the accuracy and the limitation of the meanequation[7]. _
field-type kinetic description with these approximations is N the current study, we use a large molecular dynamics
not yet known. The extension of the theory for the more(MD) simulation(using up to 477500 particlesf inelastic
inelastic and dense case, including surface friction, is one dfard spheres to investigate the steady state velocity distribu-
major goals of the current inelastic kinetic theg#}. t!ons, and quantitatively examine the accuracy of the inelas-
There is an attractor in the phase space of the granuldic Enskog-Boltzmann equation model for this system. Our
media, because inelastic collisions dissipate kinetic energynethod is free from the assumptions used in the inelastic
in the absence of an external energy source, a granular méinetic theory, and it has an advantage'that correlatlons_ can
dium loses its kinetic energy through collisions and become§évelop but has a disadvantage that it may have a finite

a static pile. To reach a steady state or an oscillatory state, @mulation size effect. _ _ o
We also compare our results with theoretical predictions

of Carrillo et al.[8], who obtained the steady state velocity

*Electronic address: moon@chaos.ph.utexas.edu distribution by using the pseudo-Maxwell molecule model
"Present address: Department of Physics, City College of CUNY[9]. The Maxwell molecule model is the special case of the
New York, NY 10031-9198. inverse power law model for the interparticle potential,
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whose potential has the form &f(r)~r 4, wherer is the  of the random variabl&;(t) can be expressed in terms of the

interparticle distance. This model has been widely used fopécond moment, which is identical to the assumption that
analytical studies as a reference system for more realistii(t) is distributed according to the Gaussian distribution
systems, because the model facilitates calculations involvingl3]. We implement an equation equivalent to K@) for
linearized Boltzmann operator. The pseudo-Maxwell mol-€ach particle with a discrete time interval of a fixed size. It
ecule model is an inelastic analog of the Maxwell moleculecan be shown that the discrete Langevin equation for the
model. velocity in between collisions subject to a Gaussian white
The remainder of the paper is organized as follows. SecPoise is given by
tion Il presents the method of the numerical simulation, and
Sec. IIFI) briefly reviews the theoretical predictions of the in- vi(t+8t) =vi(t) + VFVHG(0,D), (4)
elastic hard sphere model and the pseudo-Maxwell molecul
model. In Sec. IV, simulation results of the velocity distribu-
tions are presented, and these are compared with the theor
ical predictions(Sec. IVA). The simulation results of the
velocity correlations are also presented in this secti®ec.
IV B). The paper is summarized and concluded in Sec. V.

WhereF is the same quantity as in E€B), ot is the time
interval between the white noise forcing, a6d0,1) is the
ﬁ?ﬁit Gaussian distribution random variable.
In the simulation,N, particles are randomly chosen at

every 6t and are kicked in accordance with E4). To avoid

the development of a mean flow in the system, particles to be
kicked are randomly picked pairwise, and particles of this
IIl. NUMERICAL SIMULATION pair are kicked in opposite directions with the same speed to

We simulate an ensemble of inelastic hard sphere particle&Onserve the momentum. In an event-driven simulation, the
of diametero in a three-dimensionaBD) cubic box of each fandom kickings are computationally expensive discrete
side 105.3, which are subject to a volumetric Gaussian€Vents, because the collision list needs to be updated at each
white noise forcing. Particles obtain the kinetic energy fromKicking. For the efficiency of the simulation, the mean kick-
the white noise forcing, execute Brownian motion in be-'"9 frequency needs to be minimized, or the mean kicking
tween collisions, and dissipate the kinetic energy througtiime for each particlest(= 6tN/N) needs to be maximized,
inelastic collisions. To be consistent with the theoretical studwhereN is the total number of particles. We checked in the
ies presented in Sec. Ill, we implement a velocity-Simulation that the velocity distributions do not change as far
independent coefficient of restitutia and neglect the rota- asét is less than 1/(5.,)), Wherev,, is the mean collision
tional degrees of freedom. We use an event-driven MD codérequency. We also checked that the velocity distributions do
originally developed to simulate the patterns in vertically not depend on the choice df, and 6t in these cases. Thus
oscillated granular layers. Excellent agreement was foung|,o keep§t~1/(10vco||) throughout the simulations. The
between simulations and experimept®]. We modify this | jume fraction » varies from » (=4.29%) to &
pode to implement the Gaussian_white_noise forcing. Browrj(:21_4%)l which corresponds to 9°5 495 to 477 500 i?] the
lan dynamics for hard sphere simulation was originated i, mper of particles. Since the collisions are instantaneous,
the work of Ermak and McCammaiil], and the granular e re is only one time scale determined by the granular tem-
a”?'og was mtroduceql by W|II|ams and MacKintdsi2] for perature o/ /T, whereT is defined in Eq(6). Therefore the
their s_tudy ofa one—dlmgnsmngl system. temperature only rescales the time, and the results are inde-

To implement Gaussian Wh't.e noise _forcmg In our MD endent ofT. However, we fix the granular temperature at
COd?' we start from a StOChasm.: equaﬂon of motion for pproximately the same value throughout the simulations.
particle. The equation of motion is given by We prepare the initial conditions by locating particles in a
regular lattice. We heat them, and wait until the transients
decay away, ensuring that a steady state is reached. The data
are taken periodically with a fixed time intervat. To assure
that each data set is statistically uncorrelatéd,is chosen
larger than 5/ in all cases, and\t~10/v.,, in most

ases. We obtain 50 such data sets for each simulation, and
he error bars appearing in this paper are the standard devia-
tions of these data sets. A periodic boundary condition is
(Ti(1))=0, (20 imposed in all directions.

Xi(1)=FO)+T(b), (1)

where the mass of the particle is the uniky, is the ith
Cartesian component of the positigA(® is theith compo-
nent of the forcing due to the collisions, ahg(t) is theith
component of the stochastic forcing. The stochastic forcin
term satisfies

which assures that the fluctuation cancels out on the average, IIl. REVIEW OF THEORY

where() is an ensemble average, and ) ) ) ] ]
In this section, we briefly review the results of the previ-

<Fi(t)Fj(t')>:2F5ij5(t—t’), ®) ous theoretical studies of van Noije and Erfst and of
Carrillo et al.[8]. Both studies are based on the mean field-
where F is the strength of the correlatio;; is the Kro-  type inelastic Enskog-Boltzmann equation.
necker delta, and5(t) is the delta function. Equatiof) Following standard procedures of the kinetic theory, it can
assures that the collisions well separated in time are statistbe shown that the inelastic Enskog-Boltzmann equation for a
cally independent. We assume that all higher-order momentsystem of spatially homogeneous granular particles subject
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to a white noise forcing is given by

of
_:Q(f,f)+Lpr,

n ©)

where f=f(c,t) is the single particle distribution function,
Q(f,f) is the collision operatoic=v/+/2T(t) is the velocity

PHYSICAL REVIEW E54 031303

sfl(c?)=1,
3
Si3(c?) =5 —c?,

15 5 1
——5C%+ ¢t

SHC= 5~ 3¢5

scaled by the characteristic velocity, and the mass is the

unity. T(t) is the granular temperature, defined as the vari-

For the inelastic hard sphere model, van Noije and Ernst

ance of the velocity distribution per degree of freedom. For 4°] obtained the steady state solutions for 2D and 3D cases,

3D system,

1
T(t)=3(VO—(v(D)]?). ®)

The Fokker-Planck operatdrgp is a diffusion operator in
the velocity space, which is given by

LFP:FVE’ (7)

whereF is the strength of the correlation of Gaussian white

noise stochastic forcinfdefined in Eq.(3)], and V2 is the

Laplacian in the velocity space. The collision operator

by using the moment methdd 5], which was used in the
analysis of the velocity distributions of homogeneously cool-
ing of a freely evolving system. They expanded the solution
in Sonine polynomials and neglected terms of higher order
than the first nonvanishing correction to the MB distribution.
The steady state solution for a 3D caf¥c), is obtained as

f81s(C) = fus(c)[1+a5°5F)(c?)], (10
where
fup(C)= ic2 exp(—c?) (12)
MB \/;

'is the MB distribution(multiplied by an integration factir

Q(f,f), is chosen depending on the interparticle potential,\q
model, and the most obvious one for the granular particles is

the inelastic hard sphere collision operator.

van Noije and Erndt5] obtained the steady state solutions
to Eq. (5) using the inelastic hard sphere collision operator,
and Carrilloet al. [8] obtained the steady state solutions us-

16(1—e?)(1—2¢e?)
73+56d—24ed—10%+30(1—e)e?’
(12

ayS(d,e)=

ing the pseudo-Maxwell collision operator. In both analysesyyhere d is the dimensionality of the systemd€3 in the
the Sonine polynomial expansion method was used to conrrent study, and HS stands for inelastic hard spheres.
struct the solution. Sonine polynomials are associated La- gqr the pseudo-Maxwell molecule model, Carrioal.
guerre polynomials and have been used to construct SO|LE8] obtained the steady state solution to E8). by doubly

tions to the Boltzmann equation since Burndtt4]

expanding the solution in the energy dissipation rate(1

introduced them in the study of nonuniform gases. They are_g2)/4 and in Sonine polynomials. The deviation from the
exact eigenfunctions of the linearized Boltzmann equation,g distribution was obtained up to the orderf[16]. The
for Maxwell molecules. This expansion also leads to rapidlysoytion with the first nonvanishing correction to the MB
converging solutions of the linearized Boltzmann equationyistripution is of the order o&2. which is given by

for other short-range repulsive potentidl3]. The Sonine
polynomials of lower parameter 1/2 is defined by

1

s+n|!

n

S =2

p=0

(=x)P.

8

>+p '(n—p)!p!

In the current studyg? is the argument of Sonine polynomi-
als. The orthogonality relation with this argument is

1+ !
SN
= 112

fo c’e S SR (c?)de=5 Gym——

9

The first three Sonine polynomials are given by

v (©) = fus(c)[1+4€2S7)(c?)], (13
where MM stands for pseudo-Maxwell molecules. The first
order deviations from the MB distribution in the two models
have the same basis functi@?)(c?), the second Sonine
polynomial. We rewrite the normalized deviations from the
MB in the two models as follows,

AfHS(ec
gHS(e,c>=ﬁm)qﬁe)%(cz), (14
AfMM(e c
gMM(e,C)=ﬁ=a2"“"(e)sﬁ?ﬁ(cz), (15)
where
ayM(e)=(1-e?)%/4=4¢. (16)
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o o _ FIG. 2. The steady state velocity distributi(ﬁ&m(c) obtained
FIG. 1. The deviation from the MB distribution predicted by the from the simulation for two coefficients of restitutioa=0.1 and

theorya, as a function of the coefficient of restitutienay>(e) is  e=0.9. The volume fraction is &, . The thick solid line is the MB
the coefficient of the second Sonine polynomial from the inelasticdistribution function.

hard sphere model, ara'™(e) is that from the pseudo-Maxwell

molecule model. simulation. Assumingy(c) is a smooth function in the scale

f Ac(<1), b imated
The coefficients of the second Sonine polynomial for the twoO c(<<1). g(c) can be approximated as

models,a}>(e) anday"(e), are compared in Fig. 1.

. .. . . CotAC
To summarize, the predictions of the inelastic hard sphere f fMD)(C)dC
C

model and those of the pseudo-Maxwell molecule model are Ac o

different mainly in two ways. 9( Cot 5 |~ 4 -1 (18)
(1) There is a crossover from positive to negative values o e P2 ge

in a,S(e) as e increases, and it is negative for\P<e N

<1.0, whilea}™(e) is positive definite, 4%. The high en-
ergy tail is always overpopulated in the pseudo-MaxwellThe numerator in Eq18) is the total number of particles in
molecule model, while it is underpopulated fer-1/y2 in  the bin, which is a number counted in the simulation, and the
the inelastic hard sphere model, when the series is truncatefénominator can be evaluated using the error function table.
at this order. g(c) calculated using Eq18) for the data in Fig. 2 is shown

(2) The deviation from the MB distribution in the pseudo- in Fig. 3. For direct comparison between our simulation re-
Maxwell molecule model is quantitatively much larger thansults and the above theoretical predictions, we calculate the
that in the inelastic hard sphere model. Note that the analysispefficient of the second Sonine polynomaf® from our

of the pseudo-Maxwell molecule model uses a small inelasmeasurements. As in the theoretical analyses, we assume

ticity assumption, while the analysis of the inelastic hardffMD)(C) is expanded in Sonine polynomials,
sphere model has no such assumption.

1

IV. SIMULATION RESULTS
A. Velocity distributions

We measure the velocity of each particle periodically in 0.50 -
time with a fixed time interval ofAt~10/v.,,, which is
chosen to assure that each data set is statistically uncorre- a(c)
lated. The measured velocities are binned, and the bin size is
Ac=0.1. The velocity distributions for two coefficients of 04
restitution,e=0.1 ande= 0.9, are obtained in the simulation
(Fig. 2. As in the inelastic hard sphere theory, high velocity ; v
tail is overpopulated foe=0.1, and slightly underpopulated j T
for e=0.9, compared to the MB distribution. -05 i i

We define the normalized deviation from the MB distri-
bution g(c), which is obtained in the simulation,

tmpy(©)=Ffue(c)[1+g(c)], (17

FIG. 3. The normalized deviation from the MB distributig(c)
obtained from the simulation for two coefficients of restitutien,
=0.1 ande=0.9. The volume fraction is#&, . The error is large for
where the subscrigMD) means this is obtained in the MD c¢>3, because it involves division by a very small number.
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FIG. 4. A comparison 0&,’s from the three models, the kinetic
theory of the inelastic hard sphere mod®blid curve, the kinetic
theory of the pseudo-Maxwell molecule mo@ashed curve and
the MD simulation(open circles The volume fraction is B, for
the simulation.
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FIG. 5. The Sonine polynomial series converges slowee as
decreases. The first four nonvanishing coefficients, fai}‘ﬁ’ to
a¥P, are calculated, which are obtained from the simulation for
four coefficients of restitution. The volume fraction iz 5

dicted to occur at 32 by the inelastic hard sphere theory.

©

foupy (€)= fma(C) 1+k§2 astgg(cz)} (19

whereal'® is not included, because it is identically zero in
theory. We checked in the simulation thelf® is less than
10 % in all cases.

In the simulation, we can use either of the following two
formulas to calculat@}'®, the coefficient of théth Sonine

polynomial. Firsta}'®’s can be obtained from the following

The pseudo-Maxwell molecule model does not predict a
crossover behavior ofy™, and the predictions of this
model deviate quantitatively from the kinetic theory and
simulations of the inelastic hard sphere model.

In the simulation, alk}'®’s can be obtained by using Eq.
(20). For largerk, the weight of the high velocity data exhib-
iting strong fluctuations become larger, and so does the un-
certainty ofa}'®. We calculate up t@y " for various coef-
ficients of restitution(Fig. 5. For nearly elastic case, for
instancee=0.9, the series converges rapidly as in many

numerical integration, using the orthogonality relation for .55es of elastic hard spheres. However, as the system be-

Sonine polynomials,

2Kk1

aP(AD:(ZkJr—l)!!fo foup)(©)SHl(cHde.  (20)

Second, we can make use of the recurrence relation of 54

comes more inelastic, the series converges more slowly. For
e=0.1,a}° is about 30% ohy". It is shown that how the
first few nonvanishing coefficients of the Sonine polynomial
series obtained in the simulation affect the fittiffgg. 6).

a{l"D’s. Starting from the definition of Sonine polynomials,

Eq. (8), it can be shown that fok>2, a}'® satisfies
15
Kok k-2
wp_ (172

+ 1K
ay :(2k+1)!!<C2k>+(_1)k l_+_p21(_1)p ! p

MD
Ay

(21)

10

g(c)
where(c?) is the Zth moment. It is straightforward to nu-
merically evaluate the integration in both formulas. The
above two relations, Eq$20) and (21), are mathematically
identical. However, the errors of the lowkrcoefficients are 0

accumulated on highde coefficients in Eq(21), while each 0

ay'® is determined independently in E0). The results

obtained using Eqs(20) and (21) are nearly the same for
smallk, and they deviate more for largkraj'® is obtained
using Eq.(20), which is compared with the theoretical pre-
dictions Eq.(12), ab®, and Eq.(16), ay™ (Fig. 4. The

—— upto ag"D

---- upto a!‘:D

—-- upto a:‘fD

(e =0.1)

FIG. 6. The normalized deviations from the MB distribution
g(c), obtained in the simulatiofopen circleg, are compared with
the fitted curves using the coefficients of the Sonine polynomial
expansion calculated using the simulation data, which are shown for

simulation results deviate more from the predictions of theyg coefficients of restitutione=0.1, ande=0.9. The terms are

inelastic hard sphe’&eD kinetic theory as the system becomegccessively added to the Sonine polynomial expansion afjfa
more inelastic, and, - has a crossover between the positive The volume fraction is 5, for both, and the error bars for the data

and the negative values at aroued 0.8, while it was pre-
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volume ffaction 0
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FIG. 7. The values o&}'® obtained in the simulation as a func-

tion of density for two coefficients of restitutiog=0.1 ande FIG. 9. A crossover behavior of the velocity distribution func-
=0.5. Dashed lines are the predictions of the inelastic hard sphefgon ??MD)(C) (open circley from ~exp(—.Ac?) (compared with
kinetic theory, which do not depend on the density. dashed lingsto ~exp(—.A’c®?) (compared with solid linéss ob-

served for higher inelasticitiese<0.5). The volume fraction is

For e=0.1, a)'P fits the measured data well up to 5., and.A and A’ are arbitrary constants.

~3.2T~4T, but the high energy tail is fitted well only

when the series are kept upalf . Fore=0.9, it shows the Finally, we examine the asymptotic behavior of the high
same tendency. When we fit the data only vai® in this  energy tails of the velocity distribution functions. van Noije
case, f{yp)(C) becomes negative for>4.2 and becomes and Ernst5] found for this system that a high energy tail
negative infinity asc goes to infinity. Such nonphysical be- shows an asymptotic behavierexp(—.A4’c%?). We measure

. . . D ~
havior disappears when we inclua'® . _the velocity distribution functiorfg5,(c), which is defined
In the theoretical predictions, the steady state velocity diszg

tribution andab'® do not depend on the density, and it is a

function of the coefficient of restitution and the dimension-

ality only. However, we find that it also depends on the den- 1= f}s (c)dc

sity (Fig. 7). The value ofa}'® decreases as the system be- (MD)

comes more dilute. For the smallest volume fraction we used

v, the value ofa}'® deviates by only few percent from the = fT(SMD)(cchzdc

predictions of the inelastic hard sphere theory. We p!ﬂ)?’s

for various densities in Fig. 8af"’s are very small, as (s q -
shown in Fig. 5. It follows the same tendency a3'° does; = | fmpy(c)de. (22)
as the system becomes densgt® gets larger.

0.03—— : , : To investigate the power of the argument of the exponential

function, we renormaliz@fMD)(c) with its maximum value.
We observe the crossover behavior frorexp(—.Ac?) to

/ ~exp(—A’'c®?) asc increases, foe<0.5 (Fig. 9).

MD e=0.1 _ _
a, : B. Velocity correlations

Two major approximations imposed in the kinetic theory

7 e=05 7 ] discussed in Sec. Il are the mean field approximation and

/H/{ the truncation of the hierarchy by introducing the molecular

L : chaos assumption. In this section, we examine the validity of

0 ; ; , E each of the above approximations for this system by quanti-
Vo 2v, v, 4 Sv, tatively investigating the parallel velocity correlations, in

volume fraction long range and short range, respectively. It is known that a

FIG. 8. The density dependenceadf® for two coefficients of ~ SySteém of granular media exhibits strong spatial correlations
restitution,e=0.1 ande=0.5, obtained in the simulation. Predic- [12,17,18, such as velocity correlations, but there is still the
tions are not available, because they have not been calculated in thack Of a quantitative study of a 3D system. We suggest that
theoretical studies. Error bars for these data are bigger than thodge deviation oly'® from a}'® originates from the failure of
for a3'® (Fig. 7), because in calculating)'® higher velocity data the above approximations.
have more weight exhibiting stronger fluctuations. We define the parallel velocity correlation function as
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FIG. 10. The parallel velocity correlations for various coeffi-  FIG. 11. The parallel velocity correlations for various densities.

cients of restitution. The volume fraction i’5. Dashed lines are The coefficient of restitution is 0.1. They have the same tendency
the curves following the power law, which are included for com- for other coefficients of restitutionot shown herge

parison. The curves deviate from the power law ffbs> 20, be-

cause of the finite system size effect. Error bars are not shown for 2. Short-range correlations

clarity. . . . . . .
In this section, we investigate the velocity correlations at

1 contact before the collision, to examine the validity of the
N , NS , molecular chaos assumption. A nonzero value of these cor-
<Cl"|C2"|>_Nf (err)-rp(r+rje(r)-rp(r))dr’, relations is the signaturepof the failure of the molecular chaos
(23 assumption; the velocities are more “parallelized” after the
collision, since only the normal component of relative veloc-
ity of colliding particles are reduced at the collision, which
means that if the velocities are already parallelized before the
collision, it would indicate that the colliding pair have
N “memory” on the collisions in the past, and they are corre-
P(f)=_21 o(r—r;). (24 Jated. We find that for high inelasticity and density, the pre-
o collisional parallel velocity correlation value reaches up to
~15% of the temperature. Even for dilute or nearly elastic
We approximately evaluate this quantity using the followingcases, these are not negligibly small.

wherer=r/|r|, andp(r) is the local particle density,

formula, We calculate the velocity correlations of precollisional
and postcollisional states by evaluating E@5) for ap-
Cy(Ca proaching (1,-¢c1»,<0) and separating particlesrq6-Co
<Cl,H02,H>:E N— (25  >0), respectively, wherg;,=x,; —X, for x=r or c. We cal-
r

culate the precollisional state of short-range<(lo<?2)

parallel velocity correlationgFig. 12, and their postcolli-
where the parallel direction is along the line of centers of thesional state(Fig. 13, for various coefficients of restitution.
particle pair under consideratiofl, is the number of par- The values of the precollisional correlations are not negli-
ticles in a shell of thicknesg$r and inner radiug, and the

summation is done oveX, . We usedr =0.1053r. 0.06 ; ; :
—— e=0.1
-+- e=03
1. Long-range correlations 0.051~ -0 e=05
—— e=07
The parallel velocity correlations are obtained by averag- -=- e=09

. L A_0.04r
ing over 50 statistically uncorrelated data sets. We calculate o

those for various coefficients of restitution as a function of ofo o3l
dimensionless distanado (Fig. 10, and for various densi- ¢
ties (Fig. 11). The data are shown only fof <30, because

they are subject to the finite system size effect for larget. 002

The parallel velocity correlations in our simulation are con- 0,01 A
sistent with slow algebraic decay over a decade, **9, '

where 0.2 6<0.3. This behavior is close to the theoretical 0

prediction of van Noijeet al. [18], who predicted the ~? 1
power law from the mode coupling theory. The correlations

in our simulation get stronger for more inelastic or more FIG. 12. The short-range precollisional parallel velocity corre-
dense system, which implies that the mean field approximatations for various coefficients of restitution. The volume fraction
tion is reliable only for nearly elastic and dilute cases. is 5v,.

031303-7
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014 ' f —— e=0.1 & 0.2== pre—collisional, 1/ = 1.053 :
—ao - [Te] _e- [ _ s
o0.12} “- =03 3 pre—collisional, r/c = 1 .
A - e=05 - —— post-collisional, /o = 1.053 | .-
I’ —— e=0.7 = 0.15[ - a- ) P
0= 0.1 * -e- =09 I
~ o
Q 0.08 2
A_o.1
0.06f &
004F AN T ey 3 3 0,051
0.02r ]
B--5 : ]
0 bl bk Rt Sebk sk bt o , , , :
1 1.2 1.4 1.6 1.8 2 Vo 2Vo 3vo 4V° 5vo
r'c volume fraction

FIG. 13. The short-range postcollisional parallel velocity corre-  F|G. 15. The precollisional and postcollisional parallel velocity
lations for various coefficients of restitution. The volume fraction correlations at/o=1.053(solid lines and estimated values at con-

is 5v,. tact,r/o=1 (dashed lines as a function of the density. The coef-
ficient of restitution is 0.1.

gible compared to the temperature of the system. Postcolli-_, _.. S .

. . : relations at contact in this system show almost linear behav-
s!onal correlat!ons are more than twice as large as precollli-or both in density and the coefficient of restitution.
sional correlations.

The maximum values of the velocity correlations in Figs.
12 and 13 are not the values at the contaetg, because of
the finite size of the bins in the measurements; instead, those We have investigated the velocity distributions and paral-
are values at/o=1.053. The values at= o are estimated lel velocity correlations of B homogeneously heated granu-
by extrapolating the data in the intervakt/o<2 using the lar media for various densities and inelasticities, using an
least square fit with fifth-order polynomials. We estimate theinelastic hard sphere MD simulation. The deviations from
velocity correlations at contact=c, as a function of the theé MB distribution in our simulations qualitatively agree
coefficient of restitution(Fig. 14, and as a function of the with the results of the mean field-type inelastic hard sphere

density (Fig. 15. Since the velocity correlation varies rap- Kinetic theory [S], but we found that there is systematic
guantitative difference.

dly asr/o decreases to 1, these estimations may be re We observed the high energy tails are consistent with
arded only as approximate lower bounds. The velocity cor- .

g y bp y ~exp(—A'c®?) for e<0.5, but not for others. Since the

elastic cased=1.0) has no crossover fromexp(—.Ac?) to

~exp(—.A’'c®?), we expect that this crossover behavior may

V. DISCUSSION

0.2 : . o Ny
g X = pre—colmisional, /G = 1.053 occur at higher velocities asapproaches to 1.0, if it occurs.
2] - P’e;°°":ls."?"a"|’/‘/’= 11 053 However, we were not able to check whether the crossover
".015_ ol post-colisiona,, 1 = 1.553 occurs fore>0.5 or never occurs, because our system is
-~ Y. 4 = =

finite. It is interesting to note that the same behavior was
experimentally observed in a system with different forcing
mechanisnj19].

We found that the steady state velocity distributions in the
simulation depend on the density as well as the coefficient of
restitution, while they depend only on the latter in the theory.
The discrepancy between our simulation results and the the-
oretical predictions increases as the system becomes more
‘ . . ; inelastic or more dense, and the quantitative disagreement
0.1 0.3 0.5 0.7 0.9 reaches up to-40%. This behavior is consistent with the

e results of van Noije and co-workef8,20, who found that

FIG. 14. The precollisional and postcollisional parallel velocity the collision frequency measured in ®2MD simulation

correlations at/o= 1.053(solid line and estimated values at con- deviates more from the predictions of the inelastic Enskog-
tact,r/o=1 (dashed lines as a function of the coefficient of res- Boltzmann equation as the system becomes more inelastic.
titution. The volume fraction is B,. The values at contact are VVe suggest that the disagreement originates from the failure
obtained by extrapolating the data in Figs. 12 and 13, using fifthOf two major approximations in the theory, the mean field
order polynomials. These are extrapolated values from the averaggpproximation and the molecular chaos assumption. To ex-
values, and the error bars are not systematically determined. Themine the accuracy and the limitation of these approxima-
error may be of the same order as the valuegat=1.053 in Figs.  tions, we quantitatively investigated the parallel velocity cor-
12 and 13. relations of this system.

c. >(rlc
1,172, (
o

<C
4
=3
CL
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We found that the long-range parallel velocity correlationsever, we get an approximate expressiondéc) by assum-
are consistent with a slow algebraic decay,”**?, where ing g(c) is smooth in the scale afc;
0.2<6<0.3. This result is close to the theoretical predictions
of van Noijeet al.[18], who renormalized various quantities

such as the collision frequency using the mode coupling CO*ACe_Czcz (c)de~g| ¢ +f CO*ACG_Czcz dc
theory and predicted™ ! power law for velocity correlations S g 9| %™ co '
in the system we studied. Because of these strong correla- (A3)

tions, the mean field approximation is not a good one unless
the system is nearly elastic or very dilute. Equation(A2) can be read

We also found that the velocity correlations at contact
before the collision are not negligible. We measured the
short-range velocity correlations of precollisional and post-
collisional states separately to examine the validity of the

molecular chaos assumption. The precollisional correlations Q(Co+ E ~ —1. (A4)
at contact are about a half of the postcollisional correlations. 2 CotAc 4 2.
The correlations at contact are almost linearly proportional to . \/—;e c®dc

(¢}

both the density and the coefficient of restitution, which is
consistent with the recent results of Soto and Mareqd&13)
who studied the velocity correlations of aD2homoge- APPENDIX B: DERIVATION OF EQ. (21)
neously cooling granular media in nearly elastic regime.

We also examined the convergence of the Sonine polyno-
mial expansion technique used in the inelastic kinetic theory,
and found that the series converges more slowly as the sys- (1

+n

Starting from the definition of Sonine polynomials,

tem becomes more inelastic. n
Finally, we compared the steady state velocity distribu- SPIEDS

tions in the simulations with the theoretical predictions of p=0

Carrillo et al. [8], who studied the current system using the

pseudo-Maxwell molecule model. We found that the velocity

distribution function predicted by this model differs qualita- jt can be shown that

tively from those predicted by the inelastic hard sphere

model.

(=x)P,  (BD
I(n—p)!p!

1+
Ep

(-1

L k|k!
5 Tk|!
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APPENDIX A: DERIVATION OF EQ. (18 (SMD)(C)= fme(c)

1+, ag"DS(p)(cz)} (B3)
p=2

The deviation from the MB distributiog(c) is defined as

in Eq. (17), Using Egs.(B2) and (B3), 2kth moment reads
fimpy(€)=Tfue(c)[1+g(c)]. (A1)
(2k+ 1)1 k
c ——| 1+ —1)kPl JaMP | (B4
In the simulation, the number of particles in each bin is mea- (%)= g’o( ) p) kP B4
sured;
or
CotAcC s Cotdc 4, )
fc fiupy(c)dc= J; \/—;e “cq1+g(c)]dc, (12 -
o (o] — k
(A2)  ayP= W(c”)ﬂ 1)k+1+2 (—1)P*t 0 CHEN
(BS)

where the bin sizeAc is assumed to be very small. It is
possible to numerically solve fay(c) from Eq.(A2), how-  wherek>2.
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