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Velocity distributions and correlations in homogeneously heated granular media

Sung Joon Moon,* M. D. Shattuck,† and J. B. Swift
Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712

~Received 27 April 2001; published 27 August 2001!

We compare the steady state velocity distributions from our three-dimensional inelastic hard sphere molecu-
lar dynamics simulation for homogeneously heated granular media, with the predictions of a mean field-type
Enskog-Boltzmann equation for inelastic hard spheres@T. P. C. van Noije and M. H. Ernst, Granular Matter1,
57 ~1998!#. Although we find qualitative agreement for all values of density and inelasticity, the quantitative
disagreement approaches;40% at high inelasticity or density. By contrast the predictions of the pseudo-
Maxwell molecule model@J. A. Carrillo, C. Cercignani, and I. M. Gamba, Phys. Rev. E,62, 7700~2000!# are
both qualitatively and quantitatively different from those of our simulation. We also measure short-range and
long-range velocity correlations exhibiting nonzero correlations at contact before the collision, and being
consistent with a slow algebraic decay over a decade in the unit of the diameter of the particle, proportional to
r 2(11a), where 0.2,a,0.3. The existence of these correlations implies the failure of the molecular chaos
assumption and the mean field approximation, which is responsible for the quantitative disagreement of the
inelastic hard sphere kinetic theory.

DOI: 10.1103/PhysRevE.64.031303 PACS number~s!: 45.70.2n, 05.20.Dd, 05.70.Ln
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I. INTRODUCTION

Granular materials are collections of noncohesive mac
scopic dissipative particles and are encountered in nature
in the industry@1#. These materials exhibit a wide variety o
phenomena depending on the external forcing. The ra
granular flow regime, where the collisions are modeled
instantaneous binary inelastic collisions, is reminiscent o
gas of hard spheres. Thus, a common theoretical appr
for this regime as a first order approximation is to model
system by means of the kinetic and the continuum equat
for smooth inelastic hard spheres with a veloci
independent coefficient of restitution@2#. In the kinetic
theory approach, the mean field-type Boltzmann or Ensk
Boltzmann equation for inelastic hard spheres is used,
most techniques are directly taken from the kinetic theory
a gas of elastic hard spheres@3#. It is known that this formu-
lation is a reasonable description for nearly elastic (12e2

!1, wheree is the normal coefficient of restitution! and
dilute cases. However, these theoretical models include
proximations such as the truncation of series expansion
hierarchy, and the introduction of equation closure. The d
sipative nature of the collision modifies the physics in a n
trivial way, and the accuracy and the limitation of the me
field-type kinetic description with these approximations
not yet known. The extension of the theory for the mo
inelastic and dense case, including surface friction, is on
major goals of the current inelastic kinetic theory@4#.

There is an attractor in the phase space of the gran
media, because inelastic collisions dissipate kinetic ene
in the absence of an external energy source, a granular
dium loses its kinetic energy through collisions and becom
a static pile. To reach a steady state or an oscillatory sta
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system of granular media requires an external energy sou
In this paper, we investigate the steady state velocity dis
butions and velocity correlations of spatially homogeneo
granular media subject to a volumetric Gaussian white no
forcing. This system has been studied by several auth
@5,6,12,18# as a reference system for the kinetic theory
granular media. In this system, particles collide inelastica
and execute Brownian motion between collisions; the mot
is analogous to Brownian dynamics of hard sphere susp
sion, but here the kinetic energy is dissipated due to
inelastic collisions rather than hydrodynamic drag. This s
tem is far from equilibrium, and the steady state veloc
distribution deviates from the Maxwell-Boltzmann~MB! dis-
tribution. The velocity distribution of this system was fir
theoretically studied by van Noije and Ernst@5#, who ob-
tained the approximate solutions to the inelastic hard sph
Enskog-Boltzmann equation with a Gaussian white no
forcing. Their results were tested against the direct simu
tion Monte Carlo~DSMC! method of the inelastic Enskog
Boltzmann equation@6#, and a good agreement was found;
confirmed the accuracy of the approximate analysis of
Noije and Ernst, because the validity of the DSMC meth
relies on the validity of the inelastic Enskog-Boltzman
equation@7#.

In the current study, we use a large molecular dynam
~MD! simulation~using up to 477 500 particles! of inelastic
hard spheres to investigate the steady state velocity distr
tions, and quantitatively examine the accuracy of the ine
tic Enskog-Boltzmann equation model for this system. O
method is free from the assumptions used in the inela
kinetic theory, and it has an advantage that correlations
develop but has a disadvantage that it may have a fi
simulation size effect.

We also compare our results with theoretical predictio
of Carrillo et al. @8#, who obtained the steady state veloci
distribution by using the pseudo-Maxwell molecule mod
@9#. The Maxwell molecule model is the special case of t
inverse power law model for the interparticle potenti

Y,
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SUNG JOON MOON, M. D. SHATTUCK, AND J. B. SWIFT PHYSICAL REVIEW E64 031303
whose potential has the form ofV(r );r 24, wherer is the
interparticle distance. This model has been widely used
analytical studies as a reference system for more real
systems, because the model facilitates calculations involv
linearized Boltzmann operator. The pseudo-Maxwell m
ecule model is an inelastic analog of the Maxwell molec
model.

The remainder of the paper is organized as follows. S
tion II presents the method of the numerical simulation, a
Sec. III briefly reviews the theoretical predictions of the i
elastic hard sphere model and the pseudo-Maxwell mole
model. In Sec. IV, simulation results of the velocity distrib
tions are presented, and these are compared with the the
ical predictions~Sec. IV A!. The simulation results of the
velocity correlations are also presented in this section~Sec.
IV B !. The paper is summarized and concluded in Sec. V

II. NUMERICAL SIMULATION

We simulate an ensemble of inelastic hard sphere parti
of diameters in a three-dimensional~3D! cubic box of each
side 105.3s, which are subject to a volumetric Gaussi
white noise forcing. Particles obtain the kinetic energy fro
the white noise forcing, execute Brownian motion in b
tween collisions, and dissipate the kinetic energy throu
inelastic collisions. To be consistent with the theoretical st
ies presented in Sec. III, we implement a veloci
independent coefficient of restitutione, and neglect the rota
tional degrees of freedom. We use an event-driven MD c
originally developed to simulate the patterns in vertica
oscillated granular layers. Excellent agreement was fo
between simulations and experiments@10#. We modify this
code to implement the Gaussian white noise forcing. Brow
ian dynamics for hard sphere simulation was originated
the work of Ermak and McCammon@11#, and the granular
analog was introduced by Williams and MacKintosh@12# for
their study of a one-dimensional system.

To implement Gaussian white noise forcing in our M
code, we start from a stochastic equation of motion fo
particle. The equation of motion is given by

ẍi~ t !5F i
(c)~ t !1G i~ t !, ~1!

where the mass of the particle is the unity,xi is the i th
Cartesian component of the position,F i

(c) is the i th compo-
nent of the forcing due to the collisions, andG i(t) is the i th
component of the stochastic forcing. The stochastic forc
term satisfies

^G i~ t !&50, ~2!

which assures that the fluctuation cancels out on the aver
where^& is an ensemble average, and

^G i~ t !G j~ t8!&52Fd i j d~ t2t8!, ~3!

where F is the strength of the correlation,d i j is the Kro-
necker delta, andd(t) is the delta function. Equation~3!
assures that the collisions well separated in time are sta
cally independent. We assume that all higher-order mom
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of the random variableG i(t) can be expressed in terms of th
second moment, which is identical to the assumption t
G i(t) is distributed according to the Gaussian distributi
@13#. We implement an equation equivalent to Eq.~1! for
each particle with a discrete time interval of a fixed size
can be shown that the discrete Langevin equation for
velocity in between collisions subject to a Gaussian wh
noise is given by

v i~ t1dt !5v i~ t !1AFAdtG~0,1!, ~4!

whereF is the same quantity as in Eq.~3!, dt is the time
interval between the white noise forcing, andG(0,1) is the
unit Gaussian distribution random variable.

In the simulation,Nk particles are randomly chosen
everydt and are kicked in accordance with Eq.~4!. To avoid
the development of a mean flow in the system, particles to
kicked are randomly picked pairwise, and particles of t
pair are kicked in opposite directions with the same spee
conserve the momentum. In an event-driven simulation,
random kickings are computationally expensive discr
events, because the collision list needs to be updated at
kicking. For the efficiency of the simulation, the mean kic
ing frequency needs to be minimized, or the mean kick
time for each particled̄t(5dtN/Nk) needs to be maximized
whereN is the total number of particles. We checked in t
simulation that the velocity distributions do not change as
asd̄t is less than 1/(5ncoll), wherencoll is the mean collision
frequency. We also checked that the velocity distributions
not depend on the choice ofNk anddt in these cases. Thu
we keep d̄t;1/(10ncoll) throughout the simulations. Th
volume fraction n varies from no(54.29%) to 5no
(521.4%), which corresponds to 95 495 to 477 500 in
number of particles. Since the collisions are instantaneo
there is only one time scale determined by the granular t
perature,s/AT, whereT is defined in Eq.~6!. Therefore the
temperature only rescales the time, and the results are i
pendent ofT. However, we fix the granular temperature
approximately the same value throughout the simulatio
We prepare the initial conditions by locating particles in
regular lattice. We heat them, and wait until the transie
decay away, ensuring that a steady state is reached. The
are taken periodically with a fixed time intervalDt. To assure
that each data set is statistically uncorrelated,Dt is chosen
larger than 5/ncoll in all cases, andDt;10/ncoll in most
cases. We obtain 50 such data sets for each simulation,
the error bars appearing in this paper are the standard de
tions of these data sets. A periodic boundary condition
imposed in all directions.

III. REVIEW OF THEORY

In this section, we briefly review the results of the prev
ous theoretical studies of van Noije and Ernst@5# and of
Carrillo et al. @8#. Both studies are based on the mean fie
type inelastic Enskog-Boltzmann equation.

Following standard procedures of the kinetic theory, it c
be shown that the inelastic Enskog-Boltzmann equation fo
system of spatially homogeneous granular particles sub
3-2
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VELOCITY DISTRIBUTIONS AND CORRELATIONS IN . . . PHYSICAL REVIEW E64 031303
to a white noise forcing is given by

] f

]t
5Q~ f , f !1LFPf , ~5!

where f 5 f (c,t) is the single particle distribution function
Q( f , f ) is the collision operator,c5v/A2T(t) is the velocity
scaled by the characteristic velocity, and the mass is
unity. T(t) is the granular temperature, defined as the v
ance of the velocity distribution per degree of freedom. Fo
3D system,

T~ t !5
1

3
^uv~ t !2^v~ t !&u2&. ~6!

The Fokker-Planck operatorLFP is a diffusion operator in
the velocity space, which is given by

LFP5F“c
2 , ~7!

whereF is the strength of the correlation of Gaussian wh
noise stochastic forcing@defined in Eq.~3!#, and“c

2 is the
Laplacian in the velocity space. The collision operat
Q( f , f ), is chosen depending on the interparticle poten
model, and the most obvious one for the granular particle
the inelastic hard sphere collision operator.

van Noije and Ernst@5# obtained the steady state solutio
to Eq. ~5! using the inelastic hard sphere collision operat
and Carrilloet al. @8# obtained the steady state solutions u
ing the pseudo-Maxwell collision operator. In both analys
the Sonine polynomial expansion method was used to c
struct the solution. Sonine polynomials are associated
guerre polynomials and have been used to construct s
tions to the Boltzmann equation since Burnett@14#
introduced them in the study of nonuniform gases. They
exact eigenfunctions of the linearized Boltzmann equat
for Maxwell molecules. This expansion also leads to rapi
converging solutions of the linearized Boltzmann equat
for other short-range repulsive potentials@3#. The Sonine
polynomials of lower parameter 1/2 is defined by

S1/2
(n)~x!5 (

p50

n S 1

2
1nD !

S 1

2
1pD ! ~n2p!! p!

~2x!p. ~8!

In the current study,c2 is the argument of Sonine polynom
als. The orthogonality relation with this argument is

E
0

`

c2e2c2
S1/2

(n)~c2!S1/2
(m)~c2!dc5

1

2
dnm

S 1

2
1nD !

n!
. ~9!

The first three Sonine polynomials are given by
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S1/2
(0)~c2!51,

S1/2
(1)~c2!5

3

2
2c2,

S1/2
(2)~c2!5

15

8
2

5

2
c21

1

2
c4.

For the inelastic hard sphere model, van Noije and Er
@5# obtained the steady state solutions for 2D and 3D ca
by using the moment method@15#, which was used in the
analysis of the velocity distributions of homogeneously co
ing of a freely evolving system. They expanded the solut
in Sonine polynomials and neglected terms of higher or
than the first nonvanishing correction to the MB distributio
The steady state solution for a 3D case,f s(c), is obtained as

f (HS)
s ~c!5 f MB~c!@11a2

HSS1/2
(2)~c2!#, ~10!

where

f MB~c!5
4

Ap
c2 exp~2c2! ~11!

is the MB distribution~multiplied by an integration factor!,
and

a2
HS~d,e!5

16~12e2!~122e2!

73156d224ed2105e130~12e!e2 ,

~12!

where d is the dimensionality of the system (d53 in the
current study!, and HS stands for inelastic hard spheres.

For the pseudo-Maxwell molecule model, Carrilloet al.
@8# obtained the steady state solution to Eq.~5! by doubly
expanding the solution in the energy dissipation rate,e5(1
2e2)/4, and in Sonine polynomials. The deviation from t
MB distribution was obtained up to the order ofe4 @16#. The
solution with the first nonvanishing correction to the M
distribution is of the order ofe2, which is given by

f (MM )
s ~c!5 f MB~c!@114e2S1/2

(2)~c2!#, ~13!

where MM stands for pseudo-Maxwell molecules. The fi
order deviations from the MB distribution in the two mode
have the same basis functionS1/2

(2)(c2), the second Sonine
polynomial. We rewrite the normalized deviations from t
MB in the two models as follows,

gHS~e,c!5
D f HS~e,c!

f MB~c!
5a2

HS~e!S1/2
(2)~c2!, ~14!

gMM~e,c!5
D f MM~e,c!

f MB~c!
5a2

MM~e!S1/2
(2)~c2!, ~15!

where

a2
MM~e!5~12e2!2/454e2. ~16!
3-3
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SUNG JOON MOON, M. D. SHATTUCK, AND J. B. SWIFT PHYSICAL REVIEW E64 031303
The coefficients of the second Sonine polynomial for the t
models,a2

HS(e) anda2
MM(e), are compared in Fig. 1.

To summarize, the predictions of the inelastic hard sph
model and those of the pseudo-Maxwell molecule model
different mainly in two ways.

~1! There is a crossover from positive to negative valu
in a2

HS(e) as e increases, and it is negative for 1/A2,e
,1.0, whilea2

MM(e) is positive definite, 4e2. The high en-
ergy tail is always overpopulated in the pseudo-Maxw
molecule model, while it is underpopulated fore.1/A2 in
the inelastic hard sphere model, when the series is trunc
at this order.

~2! The deviation from the MB distribution in the pseud
Maxwell molecule model is quantitatively much larger th
that in the inelastic hard sphere model. Note that the anal
of the pseudo-Maxwell molecule model uses a small ine
ticity assumption, while the analysis of the inelastic ha
sphere model has no such assumption.

IV. SIMULATION RESULTS

A. Velocity distributions

We measure the velocity of each particle periodically
time with a fixed time interval ofDt;10/ncoll , which is
chosen to assure that each data set is statistically unc
lated. The measured velocities are binned, and the bin si
Dc50.1. The velocity distributions for two coefficients o
restitution,e50.1 ande50.9, are obtained in the simulatio
~Fig. 2!. As in the inelastic hard sphere theory, high veloc
tail is overpopulated fore50.1, and slightly underpopulate
for e50.9, compared to the MB distribution.

We define the normalized deviation from the MB dist
bution g(c), which is obtained in the simulation,

f (MD)
s ~c!5 f MB~c!@11g~c!#, ~17!

where the subscript~MD! means this is obtained in the MD

FIG. 1. The deviation from the MB distribution predicted by th
theorya2 as a function of the coefficient of restitutione. a2

HS(e) is
the coefficient of the second Sonine polynomial from the inela
hard sphere model, anda2

MM(e) is that from the pseudo-Maxwel
molecule model.
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simulation. Assumingg(c) is a smooth function in the scal
of Dc(!1), g(c) can be approximated as

gS co1
Dc

2 D'

E
co

co1Dc

f (MD)
s ~c!dc

E
co

co1Dc 4

Ap
e2c2

c2 dc

21. ~18!

The numerator in Eq.~18! is the total number of particles in
the bin, which is a number counted in the simulation, and
denominator can be evaluated using the error function ta
g(c) calculated using Eq.~18! for the data in Fig. 2 is shown
in Fig. 3. For direct comparison between our simulation
sults and the above theoretical predictions, we calculate
coefficient of the second Sonine polynomiala2

MD from our
measurements. As in the theoretical analyses, we ass
f (MD)

s (c) is expanded in Sonine polynomials,

c

FIG. 2. The steady state velocity distributionsf (MD)
s (c) obtained

from the simulation for two coefficients of restitution,e50.1 and
e50.9. The volume fraction is 5no . The thick solid line is the MB
distribution function.

FIG. 3. The normalized deviation from the MB distributiong(c)
obtained from the simulation for two coefficients of restitution,e
50.1 ande50.9. The volume fraction is 5no . The error is large for
c.3, because it involves division by a very small number.
3-4
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VELOCITY DISTRIBUTIONS AND CORRELATIONS IN . . . PHYSICAL REVIEW E64 031303
f (MD)
s ~c!5 f MB~c!F11 (

k52

`

ak
MDS1/2

(k)~c2!G , ~19!

wherea1
MD is not included, because it is identically zero

theory. We checked in the simulation thata1
MD is less than

1024 in all cases.
In the simulation, we can use either of the following tw

formulas to calculateak
MD , the coefficient of thekth Sonine

polynomial. First,ak
MD’s can be obtained from the following

numerical integration, using the orthogonality relation f
Sonine polynomials,

ak
MD5

2kk!

~2k11!!! E0

`

f (MD)
s ~c!S1/2

(k)~c2!dc. ~20!

Second, we can make use of the recurrence relation
ak

MD’s. Starting from the definition of Sonine polynomial
Eq. ~8!, it can be shown that fork.2, ak

MD satisfies

ak
MD5

~21!k2k

~2k11!!!
^c2k&1~21!k111 (

p51

k22

~21!p11S k
pDak2p

MD ,

~21!

where^c2k& is the 2kth moment. It is straightforward to nu
merically evaluate the integration in both formulas. T
above two relations, Eqs.~20! and ~21!, are mathematically
identical. However, the errors of the lowerk coefficients are
accumulated on higherk coefficients in Eq.~21!, while each
ak

MD is determined independently in Eq.~20!. The results
obtained using Eqs.~20! and ~21! are nearly the same fo
small k, and they deviate more for largerk. a2

MD is obtained
using Eq.~20!, which is compared with the theoretical pr
dictions Eq. ~12!, a2

HS , and Eq. ~16!, a2
MM ~Fig. 4!. The

simulation results deviate more from the predictions of
inelastic hard sphere kinetic theory as the system beco
more inelastic, anda2

MD has a crossover between the positi
and the negative values at arounde;0.8, while it was pre-

FIG. 4. A comparison ofa2’s from the three models, the kineti
theory of the inelastic hard sphere model~solid curve!, the kinetic
theory of the pseudo-Maxwell molecule mode~dashed curve!, and
the MD simulation~open circles!. The volume fraction is 5no for
the simulation.
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dicted to occur at 1/A2 by the inelastic hard sphere theor
The pseudo-Maxwell molecule model does not predic
crossover behavior ofa2

MM , and the predictions of this
model deviate quantitatively from the kinetic theory a
simulations of the inelastic hard sphere model.

In the simulation, allak
MD’s can be obtained by using Eq

~20!. For largerk, the weight of the high velocity data exhib
iting strong fluctuations become larger, and so does the
certainty ofak

MD . We calculate up toa5
MD for various coef-

ficients of restitution~Fig. 5!. For nearly elastic case, fo
instancee50.9, the series converges rapidly as in ma
cases of elastic hard spheres. However, as the system
comes more inelastic, the series converges more slowly.
e50.1, a4

MD is about 30% ofa2
MD . It is shown that how the

first few nonvanishing coefficients of the Sonine polynom
series obtained in the simulation affect the fitting~Fig. 6!.

FIG. 5. The Sonine polynomial series converges slower ae
decreases. The first four nonvanishing coefficients, froma2

MD to
a5

MD , are calculated, which are obtained from the simulation
four coefficients of restitution. The volume fraction is 5no .

FIG. 6. The normalized deviations from the MB distributio
g(c), obtained in the simulation~open circles!, are compared with
the fitted curves using the coefficients of the Sonine polynom
expansion calculated using the simulation data, which are shown
two coefficients of restitution,e50.1, ande50.9. The terms are
successively added to the Sonine polynomial expansion up toa4

MD .
The volume fraction is 5no for both, and the error bars for the da
are not included for better comparison with fitting curves.
3-5
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SUNG JOON MOON, M. D. SHATTUCK, AND J. B. SWIFT PHYSICAL REVIEW E64 031303
For e50.1, a2
MD fits the measured data well up tov

;3A2T;4AT, but the high energy tail is fitted well only
when the series are kept up toa4

MD . Fore50.9, it shows the
same tendency. When we fit the data only witha2

MD in this
case, f (MD)

s (c) becomes negative forc.4.2 and becomes
negative infinity asc goes to infinity. Such nonphysical be
havior disappears when we includea3

MD .
In the theoretical predictions, the steady state velocity d

tribution anda2
HS do not depend on the density, and it is

function of the coefficient of restitution and the dimensio
ality only. However, we find that it also depends on the d
sity ~Fig. 7!. The value ofa2

MD decreases as the system b
comes more dilute. For the smallest volume fraction we u
no the value ofa2

MD deviates by only few percent from th
predictions of the inelastic hard sphere theory. We plota4

MD’s
for various densities in Fig. 8 (a3

MD’s are very small, as
shown in Fig. 5!. It follows the same tendency asa2

MD does;
as the system becomes denser,a4

MD gets larger.

FIG. 7. The values ofa2
MD obtained in the simulation as a func

tion of density for two coefficients of restitution,e50.1 ande
50.5. Dashed lines are the predictions of the inelastic hard sp
kinetic theory, which do not depend on the density.

FIG. 8. The density dependence ofa4
MD for two coefficients of

restitution,e50.1 ande50.5, obtained in the simulation. Predic
tions are not available, because they have not been calculated
theoretical studies. Error bars for these data are bigger than t
for a2

MD ~Fig. 7!, because in calculatinga4
MD higher velocity data

have more weight exhibiting stronger fluctuations.
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Finally, we examine the asymptotic behavior of the hi
energy tails of the velocity distribution functions. van Noi
and Ernst@5# found for this system that a high energy ta
shows an asymptotic behavior;exp(2A8c3/2). We measure
the velocity distribution functionf̃ (MD)

s (c), which is defined
as

15E f̃ (MD)
s ~c!dc

5E f̃ (MD)
s ~c!4pc2dc

5E f (MD)
s ~c!dc. ~22!

To investigate the power of the argument of the exponen
function, we renormalizef̃ (MD)

s (c) with its maximum value.
We observe the crossover behavior from;exp(2Ac2) to
;exp(2A8c3/2) asc increases, fore<0.5 ~Fig. 9!.

B. Velocity correlations

Two major approximations imposed in the kinetic theo
discussed in Sec. III are the mean field approximation a
the truncation of the hierarchy by introducing the molecu
chaos assumption. In this section, we examine the validity
each of the above approximations for this system by qua
tatively investigating the parallel velocity correlations,
long range and short range, respectively. It is known tha
system of granular media exhibits strong spatial correlati
@12,17,18#, such as velocity correlations, but there is still t
lack of a quantitative study of a 3D system. We suggest t
the deviation ofa2

MD from a2
HS originates from the failure of

the above approximations.
We define the parallel velocity correlation function as

re

the
se

FIG. 9. A crossover behavior of the velocity distribution fun

tion f̃ (MD)
s (c) ~open circles! from ;exp(2Ac2) ~compared with

dashed lines! to ;exp(2A8c3/2) ~compared with solid lines! is ob-
served for higher inelasticities (e,0.5). The volume fraction is
5no , andA andA8 are arbitrary constants.
3-6
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^c1,uuc2,uu&5
1

NE ^c~r1r 8!• r̂r~r1r 8!c~r 8!• r̂r~r 8!&dr 8,

~23!

where r̂5r /ur u, andr(r ) is the local particle density,

r~r !5(
i 51

N

d~r2r i !. ~24!

We approximately evaluate this quantity using the followi
formula,

^c1,uuc2,uu&5(
c1,uuc2,uu

Nr
, ~25!

where the parallel direction is along the line of centers of
particle pair under consideration,Nr is the number of par-
ticles in a shell of thicknessdr and inner radiusr, and the
summation is done overNr . We usedr 50.1053s.

1. Long-range correlations

The parallel velocity correlations are obtained by aver
ing over 50 statistically uncorrelated data sets. We calcu
those for various coefficients of restitution as a function
dimensionless distancer /s ~Fig. 10!, and for various densi-
ties ~Fig. 11!. The data are shown only forr /s,30, because
they are subject to the finite system size effect for largerr /s.
The parallel velocity correlations in our simulation are co
sistent with slow algebraic decay over a decade,;r 2(11d),
where 0.2,d,0.3. This behavior is close to the theoretic
prediction of van Noijeet al. @18#, who predicted ther 21

power law from the mode coupling theory. The correlatio
in our simulation get stronger for more inelastic or mo
dense system, which implies that the mean field approxi
tion is reliable only for nearly elastic and dilute cases.

FIG. 10. The parallel velocity correlations for various coef
cients of restitution. The volume fraction is 5no . Dashed lines are
the curves following the power law, which are included for co
parison. The curves deviate from the power law forr /s.20, be-
cause of the finite system size effect. Error bars are not shown
clarity.
03130
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2. Short-range correlations

In this section, we investigate the velocity correlations
contact before the collision, to examine the validity of t
molecular chaos assumption. A nonzero value of these
relations is the signature of the failure of the molecular ch
assumption; the velocities are more ‘‘parallelized’’ after t
collision, since only the normal component of relative velo
ity of colliding particles are reduced at the collision, whic
means that if the velocities are already parallelized before
collision, it would indicate that the colliding pair hav
‘‘memory’’ on the collisions in the past, and they are corr
lated. We find that for high inelasticity and density, the p
collisional parallel velocity correlation value reaches up
;15% of the temperature. Even for dilute or nearly elas
cases, these are not negligibly small.

We calculate the velocity correlations of precollision
and postcollisional states by evaluating Eq.~25! for ap-
proaching (r12•c12,0) and separating particles (r12•c12
.0), respectively, wherex125x12x2 for x5r or c. We cal-
culate the precollisional state of short-range (1,r /s,2)
parallel velocity correlations~Fig. 12!, and their postcolli-
sional state~Fig. 13!, for various coefficients of restitution
The values of the precollisional correlations are not ne

or

FIG. 11. The parallel velocity correlations for various densitie
The coefficient of restitution is 0.1. They have the same tende
for other coefficients of restitution~not shown here!.

FIG. 12. The short-range precollisional parallel velocity cor
lations for various coefficients of restitution. The volume fracti
is 5no .
3-7
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gible compared to the temperature of the system. Postc
sional correlations are more than twice as large as prec
sional correlations.

The maximum values of the velocity correlations in Fig
12 and 13 are not the values at the contact,r 5s, because of
the finite size of the bins in the measurements; instead, th
are values atr /s51.053. The values atr 5s are estimated
by extrapolating the data in the interval 1,r /s,2 using the
least square fit with fifth-order polynomials. We estimate
velocity correlations at contact,r 5s, as a function of the
coefficient of restitution~Fig. 14!, and as a function of the
density ~Fig. 15!. Since the velocity correlation varies rap
idly as r /s decreases to 1, these estimations may be
garded only as approximate lower bounds. The velocity c

FIG. 13. The short-range postcollisional parallel velocity cor
lations for various coefficients of restitution. The volume fracti
is 5no .

FIG. 14. The precollisional and postcollisional parallel veloc
correlations atr /s51.053~solid lines! and estimated values at con
tact, r /s51 ~dashed lines!, as a function of the coefficient of res
titution. The volume fraction is 5no . The values at contact ar
obtained by extrapolating the data in Figs. 12 and 13, using fi
order polynomials. These are extrapolated values from the ave
values, and the error bars are not systematically determined.
error may be of the same order as the values atr /s51.053 in Figs.
12 and 13.
03130
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relations at contact in this system show almost linear beh
ior both in density and the coefficient of restitution.

V. DISCUSSION

We have investigated the velocity distributions and par
lel velocity correlations of 3D homogeneously heated gran
lar media for various densities and inelasticities, using
inelastic hard sphere MD simulation. The deviations fro
the MB distribution in our simulations qualitatively agre
with the results of the mean field-type inelastic hard sph
kinetic theory @5#, but we found that there is systemat
quantitative difference.

We observed the high energy tails are consistent w
;exp(2A8c3/2) for e<0.5, but not for others. Since th
elastic case (e51.0) has no crossover from;exp(2Ac2) to
;exp(2A8c3/2), we expect that this crossover behavior m
occur at higher velocities ase approaches to 1.0, if it occurs
However, we were not able to check whether the crosso
occurs for e.0.5 or never occurs, because our system
finite. It is interesting to note that the same behavior w
experimentally observed in a system with different forci
mechanism@19#.

We found that the steady state velocity distributions in
simulation depend on the density as well as the coefficien
restitution, while they depend only on the latter in the theo
The discrepancy between our simulation results and the
oretical predictions increases as the system becomes m
inelastic or more dense, and the quantitative disagreem
reaches up to;40%. This behavior is consistent with th
results of van Noije and co-workers@18,20#, who found that
the collision frequency measured in a 2D MD simulation
deviates more from the predictions of the inelastic Ensk
Boltzmann equation as the system becomes more inela
We suggest that the disagreement originates from the fai
of two major approximations in the theory, the mean fie
approximation and the molecular chaos assumption. To
amine the accuracy and the limitation of these approxim
tions, we quantitatively investigated the parallel velocity c
relations of this system.

-

-
ge
he

FIG. 15. The precollisional and postcollisional parallel veloc
correlations atr /s51.053~solid lines! and estimated values at con
tact, r /s51 ~dashed lines!, as a function of the density. The coe
ficient of restitution is 0.1.
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VELOCITY DISTRIBUTIONS AND CORRELATIONS IN . . . PHYSICAL REVIEW E64 031303
We found that the long-range parallel velocity correlatio
are consistent with a slow algebraic decay,;r 2(11d), where
0.2,d,0.3. This result is close to the theoretical predictio
of van Noijeet al. @18#, who renormalized various quantitie
such as the collision frequency using the mode coup
theory and predictedr 21 power law for velocity correlations
in the system we studied. Because of these strong cor
tions, the mean field approximation is not a good one un
the system is nearly elastic or very dilute.

We also found that the velocity correlations at cont
before the collision are not negligible. We measured
short-range velocity correlations of precollisional and po
collisional states separately to examine the validity of
molecular chaos assumption. The precollisional correlati
at contact are about a half of the postcollisional correlatio
The correlations at contact are almost linearly proportiona
both the density and the coefficient of restitution, which
consistent with the recent results of Soto and Mareschal@21#,
who studied the velocity correlations of a 2D homoge-
neously cooling granular media in nearly elastic regime.

We also examined the convergence of the Sonine poly
mial expansion technique used in the inelastic kinetic the
and found that the series converges more slowly as the
tem becomes more inelastic.

Finally, we compared the steady state velocity distrib
tions in the simulations with the theoretical predictions
Carrillo et al. @8#, who studied the current system using t
pseudo-Maxwell molecule model. We found that the veloc
distribution function predicted by this model differs qualit
tively from those predicted by the inelastic hard sph
model.
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APPENDIX A: DERIVATION OF EQ. „18…

The deviation from the MB distributiong(c) is defined as
in Eq. ~17!,

f (MD)
s ~c!5 f MB~c!@11g~c!#. ~A1!

In the simulation, the number of particles in each bin is m
sured;

E
co

co1Dc

f (MD)
s ~c!dc5E

co

co1Dc 4

Ap
e2c2

c2@11g~c!#dc,

~A2!

where the bin sizeDc is assumed to be very small. It i
possible to numerically solve forg(c) from Eq. ~A2!, how-
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ever, we get an approximate expression forg(c) by assum-
ing g(c) is smooth in the scale ofDc;

E
co

co1Dc

e2c2
c2g~c!dc'gS co1

Dc

2 D E
co

co1Dc

e2c2
c2 dc.

~A3!

Equation~A2! can be read

gS co1
Dc

2 D'

E
co

co1Dc

f (MD)
s ~c!dc

E
co

co1Dc 4

Ap
e2c2

c2 dc

21. ~A4!

APPENDIX B: DERIVATION OF EQ. „21…

Starting from the definition of Sonine polynomials,

S1/2
(n)~x!5 (

p50

n S 1

2
1nD !

S 1

2
1pD ! ~n2p!! p!

~2x!p, ~B1!

it can be shown that

c2k5 (
p50

k ~21!k1pS 1

2
1kD !k!

S 1

2
1k2pD ! p!

S1/2
(k2p)~c2!. ~B2!

We assume the following Sonine polynomial expansion
the distribution function,

f (MD)
s ~c!5 f MB~c!F11 (

p52

`

ap
MDS1/2

(p)~c2!G . ~B3!

Using Eqs.~B2! and ~B3!, 2kth moment reads

^c2k&5
~2k11!!!

2k F11 (
p50

k22

~21!k1pS k
pDak2p

MD G ~B4!

or

ak
MD5

~21!k2k

~2k11!!!
^c2k&1~21!k111 (

p51

k22

~21!p11S k
pDak2p

MD ,

~B5!

wherek.2.
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