
Journal of Statistical Physics, Vol. 93, Nos. 3/4, 1998

Motions of individual particles within the stripe and square patterns formed in
oscillated granular media are studied using numerical simulations. Our event-
driven molecular dynamics simulations yield standing wave patterns in good
accord with those observed in experiments at the same frequency and accelera-
tion amplitude. The patterns are subharmonic and so return to their initial
macroscopic state after two external cycles. However, simulations reveal that
individual particles do not return to their initial position. In addition to diffusive
motion, an organized flow of particles within the patterns is found; associated
with each peak and each valley of the pattern is a pair of counterrotating con-
vection rolls. The diffusion is anisotropic: transport perpendicular to stripes is
enhanced over that parallel to stripes. This enhancement is computed as a func-
tion of the layer depth, acceleration amplitude, frequency, and coefficient of
restitution of the particles, and is attributed to the effect of the advective motion.
Velocity distributions, granular temperature, and the dependence of the diffu-
sion coefficient parallel to the stripes on the average granular temperature are
studied.

KEY WORDS: Granular media; pattern; convection; enhanced diffusion;
granular temperature; numerical simulation.

Just as vertically oscillated fluids exhibit an instability to patterns of sub-
harmonic standing waves, (1–3) so too do vertically oscillated granular
media.(4–7) Patterns observed in experiments on granular media include

0022-4715/98/1100-0449$15.00/0 © 1998 Plenum Publishing Corporation

449

1 Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin,
Texas 78712.

2 Permanent address: Department of Physics and Physical Oceanography, Memorial Univer-
sity of Newfoundland, St. John's, Newfoundland, Canada.

I. INTRODUCTION

Convection and Diffusion in Patterns in
Oscillated Granular Media

C. Bizon,1 M. D. Shattuck,1 John R. de Bruyn,1, 2 J. B. Swift,1

W. D. McCormick,1 and Harry L. Swinney1

Received February 2, 1998



stripes, squares, hexagons, and localized structures (oscillons). Direct
simulations at the level of individual particles moving under Newton's laws
have quantitatively reproduced many of these phenomena,(8,9) but thou-
sands of particle trajectories may represent an overabundance of detail. For
many purposes a description in terms of a few averaged quantities may be
more useful. Although there are situations in which continuum models will
fail to describe the motion of granular assemblies,(10) the similarity between
the patterns formed by oscillated granular media and those formed in
oscillated fluids, and the fluid-like motions seen in experiment(4–7) and
simulation(8, 9) suggest that a system of continuum equations may apply to
this system.

The obvious starting point for a derivation of a continuum description
is the kinetic theory of dense gases. Studies have proceeded along such lines
for nearly two decades, (11–l4) and have led to good agreement between
theory and computer simulations in the case of simple shear flow;(15) few
other flows have been analyzed. The present work represents a preliminary
step towards application of such ideas to oscillated granular patterns.

We examine in direct numerical simulations the self-diffusion of par-
ticles within the flow. Experimental measurements of the diffusion coef-
ficient D would be difficult due to the problem of particle tracking within
an opaque three-dimensional flow. It is in exactly such cases that numerical
simulation can be most useful.

II. SIMULATION

We use an event driven code that has been successfully tested against
experiment.(9) In this simulation, particle collisions are instantaneous, con-
serve both linear and angular momentum, and dissipate energy. Between
collisions, particles travel parabolically under the influence of gravity. Air
friction is assumed to be negligible, as in experiments, which were conduc-
ted in evacuated containers.(5, 9)

When particles collide, new velocities and angular velocities are
calculated for the particles using an instantaneous collision operator that
depends upon three parameters: the linear coefficient of restitution e, the
coefficient of friction fi, and the rotational coefficient of restitution, /?.(16)

Experimentally, e is a function of collision velocity vn. Further, simulations
with a e that is independent of collision velocity are susceptible to divergen-
ces in the collision frequency.(17) We let e(vn) = 1 -Bva

n for vn less than a
crossover velocity v0, and e(vn) = e for vn>v0, where B = (1 — £)(t>0)~

a,
a = 0.75, vo = ^/ga, a is the particle diameter, g is the gravitational
acceleration, and e is a constant. Simulations with e = 0.7, fi = 0.5, and
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Gross features of the particle flow within patterns have been described
by several authors.(8, l9) For patterned states, F> 1, so that the layer of
particles leaves the floor of the box during each oscillation. When the layer
collides with the floor, peaks collapse and particles under the collapsing
peaks are pushed away horizontally. Approximately one half of a cycle
later, the layer is nearly flat, but large horizontal and vertical velocities
within the layer cause new peaks to grow, offset by one half of a
wavelength from their previous positions. Particles collide with the con-
tainer floor again after a further oscillation, and one period later (after a
total of two vibration periods) the pattern has returned to its initial state.

A naive view of particle motions in the layer would assume two
processes: the sloshing motion that transports large numbers of particles
one half of a wavelength each period, and diffusion. The diffusive motion
could be isolated by examining the positions of the particles every two
periods. Since the macroscopic pattern itself has returned to its initial state,
observed particle displacements would be due to diffusion.

This simple view, however, is incorrect. In addition to the sloshing
motion and diffusion, simulations with 60000 particles in a square box of
side length 100cr show an additional convective motion within the flow, as
Fig. 1 illustrates. This motion was observed by calculating particle dis-
placements over two periods. If these displacements were due to diffusion,
then time and spatial averages of the displacement field would give zero;
they do not. We average the displacement field in one spatial direction—
along a stripe for a striped pattern, or across the width of a peak for a
square pattern. Treating this averaged displacement field as a velocity field,
we numerically calculate streamlines, using particle positions as initial

III. CONVECTION
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/? = 0.35 correctly reproduce the patterns and their wavelengths obtained
from experiments with lead and bronze spheres over a wide range of con-
trol parameters(9) so we adopt these values for the present study.

We simulate particles in an oscillating box with periodic boundary
conditions in both horizontal directions. The floor of the box oscillates ver-
tically with zfloor = A sin 2nft, where A is the amplitude, f the frequency of
vibration, and t is time. The nondimensional control parameters are the
acceleration amplitude F = A(2nf)2/g, the frequency/* = /y/H/g, and the
layer depth N = H/a, where H is the physical depth of the layer. This non-
dimensionalization has the advantage of collapsing much of the wavelength
vs. frequency data onto a single curve.(18) Patterns form when F exceeds a
critical threshold rcx2.5. The pattern that forms when F exceeds Fc is
squares for f* less than about 0.35 and stripes for higher f*.
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Fig. 1. Side view of convection rolls in granular patterns at F= 3.0, f* = 0.35, and /V=5.4.
The standing wave pattern is stripes pointing into the page. Streamlines are colored with the
sign of the vorticity; clockwise rotations are green, counterclockwise are red. The solid
horizontal line in each frame is the bottom of the container.

conditions. The results of 500 such integrations, for displacement fields
calculated at several phases of the cycle, are displayed in Fig. 1.

The resulting streamlines reveal a series of convection rolls. Four rolls
are associated with each wavelength of the pattern, so that particles
descend at the centers of peaks and valleys, and ascend in between. The
rolls persist throughout the cycle, contracting and expanding with the
sloshing motion, but keeping the positions of the downflows fixed. As the
frequency of oscillation increases, the wavelength of the pattern decreases
compared to the depth of the layer, but the number of convection rolls per
wavelength stays the same. Therefore, at higher frequencies the rolls are
thin, while at lower frequencies, they are wide, as shown in Fig. 2. The rolls
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Fig. 2. As frequency increases, pattern wavelength decreases, changing the aspect ratio of the
convection rolls. At (a)/*=0.464, the pattern is stripes and at (b)/*=0.27, squares. Each
picture displays one half of the lateral extent of the cell, and both patterns are obtained for
r=3.0. For each frequency, the layer is at its maximum height.

exist for both stripe and square patterns. In stripe patterns the rolls lie
parallel to the stripes, while in square patterns the convection forms
cellular structures with the symmetry of the pattern; see Fig. 3.

Experiments in oscillated granular materials without patterns have
also shown convection.(20) Typically, grains move down along the walls of
the container and up in its center, sometimes forming a heap. The two
mechanisms proposed for such behavior, forcing by air(21) and by friction
at the lateral walls,(22) cannot be responsible for the convection we observe,
since our simulation includes neither the air flow nor lateral walls. The rolls
appear to be driven by the standing wave pattern itself; hence their spatial
slaving to the pattern. When the layer collides with the plate, pressure
increases under the peaks, forcing particles to move horizontally. The max-
imum horizontal pressure gradient is not at the bottom of the layer, since
particles in the valley resist motion, but at the base of the peak, where par-
ticles are free to move horizontally over those in the valley. Particles at the
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In fluids, advection can lead to enhanced diffusion. Dye injected into
a Rayleigh-Benard convection cell travels more rapidly perpendicular to
the rolls than it does parallel to the rolls.(23) On scales large compared to
the roll size, the perpendicular motion appears diffusive, but with a diffu-
sion coefficient larger than the molecular value. With both sloshing and
convection operating within the granular medium, it seems likely that
enhanced diffusion will occur in this system as well.

To study diffusion, we conduct simulations in a doubly periodic cell
with horizontal dimensions Lx and Ly, such that Lx«Ly. With this
geometry, stripes unambiguously form parallel to Lx. In analogy with the
experiments on convection, we treat all motion as diffusive. To compute
the effective diffusion coefficients, we record the positions of the particles at
intervals of two periods, i.e., each time the pattern returns to a particular
macroscopic state. During this interval, each particle moves a horizontal
distance l± perpendicular to the stripes and ln parallel to them. Treating
diffusion in each direction as a one-dimensional random walk with a tem-
poral step size of 2//, the diffusion coefficient D is determined from the
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IV. DIFFUSION

Fig. 3. Overhead view of convection rolls for a square pattern at f* = 0.27, T=3.0, and
N — 5.4. The grayscale indicates the vertical displacement of particles over two driving cycles,
with white indicating upward motion and black downward motion. In the left image, the
peaks are near their full height and are centered over the strong downflows, while the right
image shows the layer near its flattest point.

base of the peaks acquire the largest horizontal velocities, and the location
from which these particles begin to move when the layer strikes the plate
is coincident with the upflow of the rolls.
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mean square jump length by Dn = </^> //4 and D± = </^> //4. In order
to collect statistics for the jump lengths, simulations are allowed to run for
at least 100 oscillations, once a steady pattern is reached. In contrast to the
experiments on Rayleigh-Benard convection, our calculation does not
correspond to a time scale large compared to the diffusion time across a
pattern wavelength. Rather than computing diffusion across many rolls, we
compute diffusion within one wavelength of the pattern.

In studies of the pattern wavelength as a function of frequency, it was
found that the wavelength of the pattern depended on N, the nondimen-
sional depth of the layer.(5, 7) However, if the wavelength and frequency are
scaled with H and y/g/H respectively, many of the data collapse, effectively
removing N as a control parameter.(18) To determine whether the diffusion
coefficient displays the same behavior, we performed simulations at
/ * =0.464 and F= 3 for four layer depths, TV, between 3.6 and 10.8. In each
case, Lx/a= 10.5 and Ly/H= 18.5. Since the wavelength scales with H at
fixed f*, scaling Ly in the same manner produces the same number of
stripes in each run.

Figure 4(a) shows the nondimensional diffusion coefficients D* =
D/^/JPg parallel to and perpendicular to the stripes; the ratio /> */•£>* is
displayed in Fig. 4(b). In all cases, Df>Dft, showing enhanced diffusion
perpendicular to the stripes. As the depth decreases, so does the difference

Fig. 4. (a) Nondimensional diffusion coefficients perpendicular to stripes ( + ) and parallel
to stripes (A) and (b) diffusion coefficient ratio, as a function of N=H/a. For JV<3.6, the
patterns do not form at these parameter values (F= 3.0, / * = 0.46).
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in the two coefficients. The smallest TV which appears on the graph is the
smallest for which patterns form. With the exception of this point, we note
that Df varies only slowly with TV, although the same is not true of £)ff.
Thus, scaling with H does not completely remove TV as a control param-
eter. The different behavior of the two diffusion coefficients suggests that
they are being controlled by different processes. Specifically, the fact that
both the wavelength and the perpendicular diffusion coefficient scale with
H suggests that perpendicular diffusion is controlled by the flow of the par-
ticles within the pattern.

To investigate the dependence of the diffusion coefficient on f* and f,
we perform simulations of 6316 particles in a box, periodic in both
horizontal directions, and with Lx = 10.5CT and Ly = 100<r, so that TV = 5.4,
the shallowest layer for which a Df nearly constant with TV is reached. This
reduces the amount of computational time required to produce many
oscillations.

Figure 5(a) displays the computed dimensionless diffusion coefficients
in each direction as a function of f* at 7"= 3.0; the ratio of perpendicular
to parallel diffusion coefficients is displayed in Fig. 5(b). For all frequencies,
diffusion perpendicular to the stripes is enhanced in comparison to that
parallel to the stripes. At high frequencies, where the pattern amplitude

Fig. 5. (a) Nondimensional diffusion coefficients perpendicular to stripes ( +) and parallel to
stripes (A) and (b) diffusion coefficient ratio, as a function of f*. For f*< 0.35, patterns
undergo a transition to squares. For these runs, T=3.0, N = 5A.
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is small, diffusion proceeds in both directions at nearly equal rates. As the
frequency decreases, the pattern amplitude increases, as do both diffusion
coefficients. The perpendicular diffusion, however, grows at a much faster
rate, so that the ratio DL/DU grows to 3.1 a t / * = 0.35.

Figure 6 displays the diffusion coefficients and their ratio as a function
of F, with fixed f* = 0.35. For this frequency and depth, the transition from
a flat layer to a patterned state occurs for F between 2.5625 and 2.59375,
i.e., patterns are stable at the higher F, but not at the lower. Below onset,
the diffusion is nearly isotropic (in this case perpendicular and parallel
directions are in reference to the short side of the box); when patterns form,
the diffusion becomes strongly anisotropic due to a large increase in diffu-
sion perpendicular to the stripes. We compare the amount of anisotropy
D±/D* — 1 to the distance above onset F— Fc in Fig. 7. For this figure, we
set Fc = 2.578125, halfway between the values that bound the onset. The
anisotropy scales with the distance above onset over nearly two decades.

In addition to variation of the external control parameters, we study
the effect of varying e, the coefficient of restitution of the model particle.
Note that £, however, is not identical to the coefficient of restitution of the
real particle being modeled. While the restitution coefficient in both simula-
tion and experiment control the amount of energy dissipated in collisions,

Fig. 6. (a) Nondimensional diffusion coefficients perpendicular to stripes (+) and parallel to
stripes (A) and (b) their ratio, as a function of F. Onset of patterns occurs between
r = 2.5625 and f= 2.59375. For these data W = 5.4 and f* = 0.35.



458 Bizon et al.

Fig. 7. Diffusion anisotropy as a function of distance above onset. The best fit line has
slope 0.21 ± 0.05, where the uncertainty is determined by allowing fc to vary between the two
bounding T's. The parameters are those given in Fig. 6.

Fig. 8. (a) Nondimensional diffusion coefficients perpendicular to stripes ( + ) and parallel to
stripes (A) and (b) their ratio, as a function of 1 —s. Patterns exist for e<0.925. For these
data, r = 3.0,/* = 0.4, AT = 5.4.



the infinitesimally short collision durations of the model forces deviation
from the physical value. Because real collisions have a finite duration, a
real layer of particles colliding with an oscillating plate undergoes fewer
dissipative collisions than the event driven code simulates. In order to
model correctly the total dissipation in the layer, each model collision must
be less dissipative than its physical counterpart; hence the values of e used
in the simulations are greater than the physical value.

Variation of e varies the dissipation of energy within the layer. We
compute the diffusion coefficients as £ varies from 0.35, corresponding to
very dissipative particles, to 0.9999, corresponding to nearly elastic par-
ticles. However, since we have not varied the friction coefficient n, enough
energy is dissipated in collisions for the layer to remain in its compact
state. The results are summarized in Fig. 8. For e> 0.925, the layer no
longer supports patterns, and the diffusion is isotropic. As e decreases,
the layer becomes more dense, allowing patterns to form. Fitting a line
through the points for which a pattern exists on Fig. 8(b), we find that
Df/Dfi-l oc ( l - e ) a 7 7 ± a 0 5 . For the lowest e, both diffusion coefficients
again increase, but there is no noticeable change in behavior of the ratio
of the coefficients.
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V. VELOCITY DISTRIBUTIONS AND TEMPERATURE
DEPENDENCE

While D\ is controlled by the advective motion of particles within the
pattern, diffusion parallel to stripes or in the absence of patterns is
presumably governed by the bulk properties of the layer. That is, we sup-
pose that Df\ is a function of the thermodynamic state of the layer, which
is in turn set by the external control parameters and the properties of the
particles.

With this motivation and with the idea of obtaining a result that may
be useful in testing granular kinetic theory, we examine the dependence of
Dft on the granular temperature. Granular temperature, defined in analogy
to thermodynamic temperature, is related to the mean square velocity fluc-
tuation by(26–28)

where m is the mass of a particle, k is a constant analogous to Boltzmann's
constant and relates the fluctuation energy to a temperature scale, i indicates
the component of the velocity in question (either || or ±), and the angle
brackets denote an ensemble average at a particular spatial point and
phase in the cycle. In general, T will be a function of position and time, and
could be anisotropic.
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Since £>jf is computed over all particles regardless of their location
within the flow, and because we assume that at all locations and times the
average velocity parallel to the stripes is zero, we calculate the average in
Eq. (1) over all particles. Figure 9(a) displays the nondimensional mean
square velocity parallel to the stripes as a function of phase of the cycle.
Velocity distributions at three phases near the collision are displayed in

Fig. 9. (a) Mean square velocity parallel to stripes as a function of phase for T=3.0,
/ * =0.436, JV = 5.4. The peak occurs when the layer collides with the plate. (b) Velocity dis-
tribution functions for the phases indicated in (a). (c) Velocity distribution functions of two
populations of particles at phase (2). Particles that have interacted with the plate have a
nearly gaussian distribution (the solid curve is a gaussian fit). The remaining particles have
a narrower distribution similar to the velocity distribution function before the collision. The
particles in the broader distribution are those which have vertical position less than 4<r above
the plate and vertical velocity greater than —0.9 *JgH.



Fig. 9(b). The distribution is at its narrowest just before the collision.
When the layer collides with the plate, the layer is violently heated.
Initially, only the particles closest to the plate are heated, so that the layer
may be considered as two populations of particles: particles near the bot-
tom of the layer that have been heated by the layer and particles at the top
of the layer that have not yet interacted with the plate via the particles
beneath them. In the phase space of vertical position vs. vertical velocity,
these populations are relatively distinct, and velocity distribution functions
may be constructed separately for each population, as shown in Fig. 9(c)
The lower particles have the broader distribution. In addition to increasing
their velocity, the many particle collisions drive the distribution towards a
Maxwell-Boltzmann distribution. The distribution function for the higher
particles is similar to that of the entire layer just prior to the collision. As
the layer is lifted by the plate, the upper reaches of the layer are excited,
but because of the inelastic nature of the collisions, the layer again begins
to cool, narrowing the distribution until the following collision.

Averaging Eq. (1) over phase, as indicated by the overline, we have
<D?,> =kTu/m, or nondimensionalizing,

where T* is a single parameter that describes the thermal activity for a par-
ticular set of control parameters and particle properties.

In Fig. 10 we plot Df\ as a function of T* for the data with different
values of e, that is, the data in Fig. 8. The plot of D* is nearly linear with
T* for data points which both do and do not correspond to patterned
states. Given this somewhat surprising success of finding a single thermo-
dynamic quantity that determines £>*, we attempt to unify the previous
results. In Fig. 11 we plot the values of / )* obtained from the simulations
discussed above, as well as a second set obtained from variation in F, and
a number of other simulations, as summarized in Table I. While the level
of collapse is reasonable, several of the data points do not lie on the com-
mon curve; Df} is not simply a function of T*. However, we find empirically
that all of our results for Df\ as a function of F, f*, N, and s can be
described as a function of a single scaled temperature,

as shown in Fig. 12.
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Fig. 10. Diffusion coefficient parallel to stripes versus nondimensional average granular tem-
perature for the data plotted in Fig. 8. The line is a best fit to the data for which r* >0.2.

Fig. 11. Diffusion coefficient parallel to stripes versus average temperature for the data in
Table I.

Fig. 12. Diffusion coefficient parallel to stripes versus rescaled average temperature for the
data in Table I.



Table I. Simulation Parameters

r

3.0

3.0

3.0

3.0

3.0

3.0

2.25

2.5

2.5625

2.59375

2.625

2.75

3.0

3.25

3.5

3.25

3.5

2.5

2.75

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

f*

0.35

0.378

0.4

0.436

0.464

0.52

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.4

0.4

0.4

0.4

0.464

0.464

0.464

0.464

0.4

0.4

0.4

0.4

0.4

0.4

0.4
0.4

0.378

0.43

0.464

0.35

0.387

N

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

3.6

5.4

8.1

10.8

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

8.1

10.8

5.4

5.4

3.735

£

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.35

0.535

0.7

0.85

0.925

0.99

0.999

0.9999

0.7

0.7

0.99

0.99

0.5

symbol

O

o
o
o
o
o
A

A

A

A

A

A

A

A

A

X

X

X

X

*

*

*

+
+
+
+

+
+
+
+

•
•
•
•
•
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We have explored the dynamics of particles within patterns in
granular media. We have found that the motions of these particles may be
decomposed into three processes. First, particles slosh back and forth form-
ing subharmonic standing waves in the layer. Second, superimposed on this
motion is a set of convection rolls: when the pattern returns to its initial
position, the particles that compose it have moved in an organized way.
Third, particles diffuse within the flow. When stripe patterns are present,
the flow of particles perpendicular to the stripes controls the diffusion in
that direction, leading to an enhancement over the diffusion parallel to
stripes. This enhancement grows with the strength of patterns, increasing
as F increases, f* decreases, and e decreases. We find that the diffusion
coefficient parallel to the stripes depends on a single variable, the average
granular temperature rescaled with the control parameters.

Note again that Eq. (3) is completely empirical; further, it is constructed
from a set of data points that, while representing a large amount of com-
putational time, are somewhat sparse in the {F, f*, TV, e) parameter space.
Nevertheless, the relation can perhaps provide a useful starting point for
modelers of oscillated granular media, especially if the proportionality
between self-diffusion and viscosity from the kinetic theory of elastic par-
ticles holds in the oscillated granular system.

The diffusion coefficients that we have presented are all dimensionless.
Nondimensional diffusion coefficients on the order of 5x lO~ 3 translate
into dimensional diffusion coefficients of about 5 x 10~3 cm2 s"1, assuming
a typical layer depth of H = 0.1 cm. Given that the pattern wavelength in
such layers is 0.5 cm at 30 Hz, we calculate a diffusion time across a
wavelength to be 50 seconds, or 1500 oscillations. An experimental cell of
10 cm diameter will have a horizontal diffusion time parallel to the stripes
of five and a half hours.

We thank Michael Marder for helpful discussions. This research is
supported by the Department of Energy Office of Basic Energy Sciences
and the Texas Advanced Research Program.
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