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Abstract Contact breaking and Hertzian interactions
between grains can both give rise to nonlinear vibrational
response of static granular packings. We perform molecular
dynamics simulations at constant energy in 2D of friction-
less bidisperse disks that interact via Hertzian spring poten-
tials as a function of energy and measure directly the vibra-
tional response from the Fourier transform of the velocity
autocorrelation function. We compare the measured vibra-
tional response of static packings near jamming onset to that
obtained from the eigenvalues of the dynamical matrix to
determine the temperature above which the harmonic approx-
imation breaks down. We compare packings that interact via
single-sided (purely repulsive) and double-sided Hertzian
spring interactions to disentangle the effects of the shape
of the potential from contact breaking. Our studies show that
while Hertzian interactions lead to weak nonlinearities in the
vibrational behavior (e.g. the generation of harmonics of the
eigenfrequencies of the dynamical matrix), the vibrational
response of static packings with Hertzian contact interactions
is dominated near jamming by contact breaking as found for
systems with repulsive linear spring interactions.
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1 Introduction

Dry granular media are composed of discrete grains that
interact via purely repulsive, frictional contact interactions.
Without external driving, granular materials form static pack-
ings that possess nonlinear response to external perturba-
tions [1,2]. For example, the acoustic response of granular
packings includes harmonic mode generation, mixing, atten-
uation, and dispersion, which have been exploited to engi-
neer novel phononic metamaterials that can act as rectifiers
and filters [3]. There are many sources of nonlinearity in
dry granular media, which include (1) the nonlinear form of
Hertzian interactions between grains [4], (2) contact break-
ing and formation (i.e. contact clapping [5]) that occurs fre-
quently in systems with purely repulsive contact potentials,
(3) dissipation, and (4) rolling and sliding frictional contacts.
In prior studies, we isolated the nonlinearities that arise from
contact breaking by measuring the vibrational response of
mechanically stable (MS) packings of frictionless disks that
interact via purely repulsive linear spring potentials [6,7].
In this manuscript, we perform computational studies to
determine the relative contributions of the nonlinearities that
arise from the shape of the Hertzian potential and contact
breaking by measuring the vibrational response of MS pack-
ings that interact via single—(repulsive only) and double-
sided (repulsive and attractive1) Hertzian springs. The effects

1 Note that dry macroscopic grains do not possess attractive interac-
tions, but we consider double-sided Hertzian interactions to separate
the nonlinearities that arise from contact breaking and those from the
nonlinear form of the interaction law with particle overlap.
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of frictional contacts on the vibrational and mechanical
properties of particulate media have been investigated in
other recent computational [8,9] and experimental [10,11]
studies.

We find two overarching results: (1) The shape of the
Hertzian interaction potential gives rise to nonlinearities in
the vibrational response of jammed disk packings, such as the
generation of harmonics of the driving frequency and beats
among these and normal mode frequencies from the dynam-
ical matrix. (2) However, these nonlinearities are weak com-
pared to those generated by contact breaking in systems with
purely repulsive Hertzian spring interactions. In particular,
prior to contact breaking (over the timescales we consid-
ered), the measured density of vibrational modes for jammed
packings with Hertzian interactions is similar to that inferred
from linear response. These results emphasize the importance
of contact breaking in determining the vibrational response
in jammed packings that interact via purely repulsive linear
spring as well as Hertzian potentials.

2 Methods

We first prepared MS packings of frictionless disks using the
successive-compression-and-decompression algorithm [12]
at a given deviation in packing fraction above jamming onset
�φ = φ − φJ for systems composed of N = 32–128 disks.
At φJ , the packings are isostatic with the minimal number
of contacts (Nc = 2N ′ − 1, where N ′ = N − Nr and Nr

is the number of rattler particles with fewer than 3 contacts)
required for mechanical stability [12]. We then performed
molecular dynamics simulations at constant total energy E
in a periodic square cell of N frictionless disks that interact
via purely repulsive pair potentials:

�Fi j = ε

σi j

(
1 − ri j

σi j

)α

�

(
1 − ri j

σi j

)
r̂i j (1)

where ri j is the separation between particles i and j, r̂i j =
(xi j x̂ + yi j ŷ)/

√
x2

i j + y2
i j is a unit vector that points from

particle j to i, �(1 − ri j/σi j ) is the Heaviside step function
that ensures that particles do not interact when they do not
overlap, σi j = (σi + σ j )/2, σi is the diameter of disk i ,
and ε = 1 is the characteristic energy scale of the repulsive
interaction. The power-law exponent α determines the form
of the repulsive interactions, where α = 1(3/2) denotes the
linear (Hertzian) spring interaction. We consider bidisperse
mixtures with half large and half small particles and size ratio
d = 1.4 to inhibit crystallization [13].

The linear vibrational response for MS packings (that
interact via the pairwise forces in Eq. 1) can be obtained
from the dynamical matrix [14]

K pq = d2V

dξpdξq

∣∣∣∣�ξ=�ξ0
, (2)

where V = ∑N
i, j=1 V (ri j ) is the total potential energy,

�Fi j = −dV (ri j )/dri j r̂i j , �ξ = {x1, y1, x2, y2, . . . , xN , yN }
give the positions of the disk centers, p, q = 1 . . . 2N , and
K is evaluated at the MS packing, �ξ0, which is a local min-
imum of V · K is a 2N × 2N matrix that can be written
in terms of the 2 × 2 block matrices for each particle pair l
and m

K ′
lm =

(
Kxl xm Kxl ym

Kyl xm Kyl ym

)
, (3)

which in the �φ → 0 limit reduces to

K ′
lm ≈ α

(
ε

σ 4
lm

)(
σlm Flm

ε

)(α−1)/α(
x2

lm xlm ylm

xlm ylm y2
lm

)
,

(4)

where l �= m, l, m = 1, . . . , N are the disk labels, xlm =
xl − xm, ylm = yl − ym , and Flm is the magnitude of
the force �Flm . The lth eigenvector of K , associated with
eigenvalue kl , is normalized so that

∑2N
i=1 e2

li = 1, where
êl = {elx1, ely1 , . . . , elxN , elyN }. The vibrational frequencies
in the harmonic approximation are ωd

l = √
kl/m, where m

is the mass of each disk.
We will compare the distribution of vibrational fre-

quencies predicted from linear response to the vibrational
response measured in molecular dynamics simulations. We
vibrated each MS packing using two methods: (1) Perturb the
static packing along one eigenmode l of the dynamical matrix
by assigning the velocities �vi = δ(E)�eli to particle i , where
�eli gives the components of the lth eigenvector that corre-
spond to particle i, δ(E) = √

2E/m, and E is the kinetic
energy of the perturbation; and (2) Perturb the system along
a superposition of the 2N ′ − 2 eigenmodes2 by assigning
�vi = δ(E)�eall where �eall = 1√

2N ′−2

∑2N ′−2
k=1 �eki .

For times t > t1 = 2π/ωd
1 after the perturbation, where

ωd
1 is the smallest dynamical matrix frequency, we measure

the Fourier transform of the velocity autocorrelation func-
tion, which yields the distribution of vibrational frequencies

D(ωv) =
∞∫

0

dt
〈�v(t0 + t) · �v(t0)〉

〈�v(t0) · �v(t0)〉 eiωv t , (5)

where 〈.〉 indicates averages over all particles and time ori-
gins t0. We also measured the eigenvalue spectrum of the
displacement correlation matrix [15]

Ci j = 〈(ξi − ξ0
i )(ξ j − ξ0

j )〉, (6)

2 Two of the eigenvectors of the dynamical matrix correspond to uni-
form translations of the center of mass since we employ periodic bound-
ary conditions in 2D.
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Fig. 1 a Density of vibrational modes D(ωd ) from the dynamical
matrix averaged over 800 static packings with N = 128 disks that
interact via purely repulsive linear (black lines) and Hertzian (red
lines) spring forces at �φ = 10−5 (solid lines) and �φ = 10−2

(dashed lines). The contact networks for the packings that interact
via linear and Hertzian spring interactions are identical. We define
ωd = ωd/(〈ωd 〉α=1.5/〈ωd 〉α=1), where 〈ωd 〉α is the average vibra-
tion frequency for the force law in Eq. 1 with power-law exponent α.

b Distribution of normalized pair force magnitudes P(Fi j /〈Fi j 〉) for
systems with purely repulsive linear and Hertzian spring interactions at
�φ = 10−5 and 10−2 using the same line types in (a). c Ratio of the
average vibrational frequencies for purely repulsive Hertzian and linear
spring interactions γω = 〈ωd 〉α=1.5/〈ωd 〉α=1 (circles) and pair force
magnitudes γF = 〈Fi j 〉α=1.5/〈Fi j 〉α=1 (squares) versus the deviation
in packing fraction from jamming onset �φ. The solid and dotted lines
have slope 0.25 and 0.5, respectively (color figure online)

where i, j = 1 . . . 2N and the angle brackets indicate an
average over time. The vibrational frequencies are obtained
from the displacement correlation matrix eigenvalues, ωc

k =√
T/ck , where T = K/N is the temperature and K is the

total kinetic energy of the system. The binned versions of the
density of vibrational frequencies are given by D(ωc,d) =
[N (ωc,d +�ωc,d)−N (ωc,d)]/(N (∞)�ωc,d), where N (ω)

is the number of frequencies less than ω. D(ωd), D(ωv), and
D(ωc) are normalized so that

∫ ∞
0 dωD(ω) = 1.

3 Results

In the harmonic approximation, the density of vibrational
modes is similar for static packings that interact via purely
repulsive linear and Hertzian spring interactions. In Fig. 1a,
we show the density of vibrational modes D(ωd) obtained
from the dynamical matrix for linear and Hertzian springs.
Note that for Hertzian interactions, we considered scaled
frequencies ωd = ωd/(〈ωd〉α=1.5/〈ωd〉α=1) since the aver-
age frequency 〈ωd〉α=1.5 ∼ (�φ)0.25 for Hertzian springs as
shown in Fig. 1c, whereas the average vibrational frequency
for linear spring potentials 〈ωd〉α=1 is independent of �φ.

For packings near jamming onset that are isostatic, the
pair force magnitudes for systems that interact via purely
repulsive linear springs are proportional to those for Hertzian
springs as shown in Fig. 1c. From Eq. 3, this implies that the
dynamical matrix elements depend on the force law, and thus
the distribution of dynamical matrix frequencies varies with
the force law for isostatic packings near jamming onset as
emphasized in Fig. 1a.

In Fig. 1a, we show that the distribution of vibrational fre-
quencies from the dynamical matrix develops a plateau that

extends to successively lower frequencies as �φ → 0 [16]
for both linear and Hertzian springs (Eq. 1). For intermedi-
ate and large frequencies, the scaled D(ωd) does not depend
strongly on �φ. However, we find that the weak peak in
D(ωd) diminishes and D(ωd) extends to slightly larger fre-
quencies for Hertzian compared to linear spring interactions.

In Fig. 2, we show the binned distribution of vibrational
frequencies D(ω) from the dynamical matrix (D(ωd)), dis-
placement correlation matrix (D(ωc)), and Fourier transform
of the velocity autocorrelation function (D(ωv)) for packings
near jamming onset with linear and Hertzian spring inter-
actions as a function of the perturbation energy. At suffi-
ciently low perturbation energies, D(ωv) and D(ωc) both
agree with D(ωd). For both linear and Hertzian spring inter-
actions, D(ωv) and D(ωc) decay monotonically from a peak
near ω = 0 at high perturbation energies that remove on
average ≈ 50 % of the original contacts that were present at
zero temperature. However, D(ωv) and D(ωc) do not have
the same form at these energies; D(ωv) possesses a plateau at
intermediate frequencies, whereas D(ωc) does not. In addi-
tion, for large perturbation energies, D(ωv) possesses a high
frequency tail for purely repulsive Hertzian compared to lin-
ear spring interactions.

In Fig. 3, we show the measured vibrational response (fre-
quency content of the Fourier transform of the velocity auto-
correlation function) for packings near jamming onset with
N = 32 that are perturbed along eigenmode 12 of the dynam-
ical matrix over a range of perturbation energies. At pertur-
bation energies E < Ec, where Ec is the energy above which
a single contact breaks (Fig. 3a, c), the vibrational response
is confined to the original eigenfrequency of the perturba-
tion ω12 for repulsive linear spring interactions (Fig. 3b). In
contrast, for packings with purely repulsive Hertzian spring
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Fig. 2 The distribution of
vibrational frequencies D(ω)

for N = 32 bidisperse disk
packings with �φ = 10−4 using
the dynamical matrix (black),
displacement correlation matrix
(red), and Fourier transform of
the velocity autocorrelation
function (blue) at perturbation
energies where 0 % (dashed)
and 50 % (dotted) of the
contacts are missing on average
from the zero-temperature
configuration for purely
repulsive a linear and b Hertzian
spring interactions (color figure
online)
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Fig. 3 Time-averaged number of contacts Nc (a, c) and color-scale
plot of log10 D(ωv) (b, d) for static packings of N = 32 bidisperse
disks perturbed along a single eigenmode (mode 12) as a function of
the perturbation energy E/N . At E = 0, the packing possesses the
isostatic number of contacts 2N ′ − 1 = 63. In b, d, the solid hori-
zontal line represents the frequency of the driving frequency ω12 and
the dotted horizontal lines indicate harmonics of the driving frequency,

2ω12, 3ω12, and 4ω12. The vertical solid and dashed lines indicate the
energies Ec above which the first contact breaks and E1 above which
there is on average one contact missing from the zero-temperature con-
figuration. The inset shows a close-up of the region between Ec/N and
E1/N , where the solid horizontal lines give the dynamical matrix fre-
quencies. The left (right) columns show the results for purely repulsive
linear (Hertzian) spring interactions

interactions [17], the frequency response includes harmon-
ics of the driving frequency ω12 even before contact breaking
(Fig. 3d), which arise from the factor (1 − ri j/σi j )

3/2 in the
force law (Eq. 1).

For perturbation energies beyond which a single con-
tact breaks, but before one contact is absent on average,
Ec < E < E1, the vibrational response is described mainly
by a set of discrete frequencies. For both purely repulsive

linear and Hertzian spring interactions, the discrete frequen-
cies correspond to a combination of the eigenfrequencies of
the dynamical matrix and low-frequency harmonics of the
driving frequency (although the low-frequency harmonics
possess stronger signals for Hertzian spring interactions).

In the “Appendix”, we demonstrate for a simpler two
degree-of-freedom system with double-sided Hertzian inter-
actions that beats as well as harmonics of the driving fre-
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Fig. 4 Time-averaged number of contacts Nc (a, c) and color-scale
plot of log10 D(ωv) (b, d) for the same systems in Fig. 3 perturbed in a
superposition of all eigenmodes of the dynamical matrix as a function of
the perturbation energy E/N . The vertical solid and dashed lines indi-
cate the energies Ec above which the first contact breaks and E1 above

which one contact on average is missing from the zero-temperature
configuration. The insets are close-ups of the vibrational response for
Ec < E < E1. The left (right) columns show the results for purely
repulsive linear (Hertzian) spring interactions

quency are present at large perturbation energies (E > E1).
However, in large packings with single-sided interactions,
contact breaking causes the vibrational response to become
continuous before a significant number of harmonics and
beats occur. We find in Fig. 3b, d that for E > E1 the vibra-
tional response is described by nearly a uniform continuum
of frequencies for packings with both purely repulsive linear
and Hertzian spring interactions. Further, by comparing pan-
els (a) and (b) (or c and d), the vibrational response develops
significant weight at zero frequency when roughly 25 % of
the zero-temperature contacts are missing on average. These
results emphasize that contact breaking (not the shape of the
potential) dominates the nonlinear vibrational response for
systems that interact via purely repulsive contact potentials.

How does the vibrational response depend on the nature
of the perturbation applied to the static packing? In Fig. 4b,
d, we show D(ωv) for the same packings studied in Fig. 3
after they are perturbed by a superposition of eigenmodes �vall

instead of by a single eigenmode of the dynamical matrix
for both linear and Hertzian spring interactions. Because
we chose the perturbation �vall to include equal amounts
of all dynamical matrix eigenmodes, at low perturbation
energies E � Ec, D(ωv) is composed of the dynamical
matrix eigenfrequencies with equal weights. At all perturba-
tion energies E < Ec, D(ωv) exhibits peaks at the dynam-

ical matrix eigenfrequencies with uniform weights for lin-
ear spring interactions. In contrast, there are slight differ-
ences in the weights at each of the dynamical matrix eigen-
frequencies for Hertzian interactions for E � Ec and for
Ec < E < E1 for both linear and Hertzian interactions.
Similar to the behavior when perturbing along a single eigen-
mode, we find that the vibrational response includes a con-
tinuum of frequencies for E � E1. In addition, the density
of vibrational modes becomes peaked near zero frequency
when the average number of contacts drops to � 25 % of
its zero-temperature value. In this regime, the perturbation
protocol does not affect the vibrational response.

4 Conclusion

In summary, we performed molecular dynamics simulations
to measure the vibrational response of static disk packings
near jamming onset that interact via purely repulsive linear
and Hertzian spring potentials. Instead of assuming linear
response as in many previous studies (e.g. Refs. [16,19]),
we measured directly the vibrational frequencies from the
Fourier transform of the velocity autocorrelation function and
displacement correlation matrix. We find that although weak
nonlinearities (e.g. the appearance of low-frequency harmon-
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Fig. 5 a Model system where a central mobile disk is confined by three
same-sized fixed disks 1, 2, and 3 located at bond angles θ12 = 108◦,
θ23 = 115.2◦, and θ31 = 136.8◦. The initial amount of compression
is � = 2 × 10−2, and the disks interact via either single- or double-
sided Hertzian spring potentials. b Contours of the magnitude of the
total force on the central disk i from neighboring disks j ,

∣∣∑3
j=1

�Fi j
∣∣,

for single-sided Hertzian interactions at compression � = 10−4. The
red lines indicate when the central particle loses or gains a contact with
its neighbors, and the labels 1, 2, and 3 correspond to the number of
contacts in each region bounded by the red lines. c Same as b except
the disks interact via double-sided Hertzian spring interactions (Eq. 7)
(color figure online)

ics of the driving frequency) occur at energies below contact
breaking for packings that interact via Hertzian potentials,
contact breaking dominates the vibrational response for ener-
gies E > E1

3. The onset of nonlinearities from the shape of
the Hertzian interaction potential occurs at a similar energy to
that for contact breaking, however, contact breaking leads to
much stronger nonlinearities in the vibrational response, e.g.
the response spreads to a continuum of frequencies that are
outside the range of the eigenfrequencies of the dynamical
matrix for the static packing. Thus, we have shown that con-
tact breaking gives rise to strongly nonharmonic response
for systems with both purely repulsive linear and Hertzian
interaction potentials [18].
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Appendix: Simple model

In this “Appendix”, we focus on a simple single-particle
model to illustrate that contact breaking rather than nonlin-
earities that arise from the shape of the Hertzian potential
dominates the vibrational response of static packings with
purely repulsive Hertzian spring interactions. This model
consists of a central, mobile disk that is confined between
three fixed same-sized disks (Fig. 5a). The system is com-

3 The excitation energies we consider are less than those that would lead
to plastic deformation in spherical grains for a wide range of materials.

pressed from the ‘just-touching’ configuration by growing all
particle diameters by σ ′ = (1 + �)σ , and then using energy
minimization to find the new mechanically stable positions
of the central disk x ′(�) and y′(�). The disks interact via
single-sided Hertzian spring forces (Eq. 1 with α = 3/2)
or double-sided Hertzian spring forces (Eq. 1 with α = 3/2
without the Heaviside step function)

�Fi j = ε

σi j

∣∣∣∣1 − ri j

σ

∣∣∣∣
3/2

r̂i j , (7)

for which all particles always interact with both repulsive
(ri j < σ) and attractive (ri j > σ) forces. Studying this sim-
ple system allows us to clearly separate the eigenfrequencies
of the dynamical matrix (harmonic approximation) from the
additional frequencies in the vibrational response that are
generated from the shape of the Hertzian potential and con-
tact breaking (nonharmonic response).

Figure 5b, c shows the contours of the magnitude of the
total force on the central disk for single- and double-sided
Hertzian spring potentials, respectively. When the force mag-
nitude contours are ellipsoidal and evenly spaced, the model
system displays linear response. For both single- and double-
sided Hertzian spring potentials, we find that deviations from
linear response occur at energies near those that cause con-
tact breaking (in single-sided systems). When contacts break
in systems with single-sided interactions, the force magni-
tude contours become highly anisotropic and multi-lobed.
In contrast, the model system with double-sided Hertzian
spring interactions shows much weaker departures from lin-
ear response at large energies where contacts would break in
systems with single-sided interactions.

In Fig. 6a–c, we show the vibrational response for the
model system with doubled-sided Hertzian spring interac-
tions obtained from the Fourier transform of the velocity
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Fig. 6 Fourier transform of the velocity autocorrelation function
D(ωv) for the model system in Fig. 5a with double-sided Hertzian
spring interactions (Eq. 7) compressed by � = 10−4 and the central par-
ticle perturbed randomly at energies a E/N = 10−16 (with an average
number of contacts 〈Nc〉 = 3), b E/N = 3 × 10−11 just below contact
breaking for single-sided Hertzian spring interactions (〈Nc〉 = 3), and
c E/N = 10−7, which is far above the energy required to break a single
contact on average for single-sided Hertzian spring potentials. In d, we

show the vibrational response for perturbation energy E/N = 10−7

for the same systems in a–c except the disks interact via single-sided
Hertzian spring potentials. The vertical solid lines correspond to the
two dynamical matrix eigenfrequencies, the vertical dashed lines cor-
respond to harmonics of the dynamical matrix eigenfrequencies, and the
vertical dotted lines correspond to beats between the dynamical matrix
eigenfrequencies and their harmonics. The frequencies ωv are normal-
ized by ωd

1 , which is the smallest dynamical matrix eigenfrequency

autocorrelation function for several values of the energy
of the central particle. At low energies much below con-
tact breaking (in systems with single-sided interactions),
only the two eigenfrequencies of the dynamical matrix are
found in the vibrational response (Fig. 6a). For energies
close to and above contact breaking (in systems with single-
sided interactions), the eigenfrequencies of the dynamical
matrix, low-frequency harmonics, and beats between them
are found in the vibrational response (Fig. 6b, c). In con-
trast, at energies above contact breaking in packings with
single-sided Hertzian interactions the vibrational response
shows a more continuous spectrum of frequencies spread
well beyond the range of the original eigenfrequencies of
the dynamical matrix. Previous work on Hertzian chains
with double-sided interactions has shown that the vibrational
response is periodic, but composed of non-sinusoidal nonlin-
ear normal modes [20]. Further, beats occur because these
modes are not orthogonal, and they mix with the eigen-
modes of the dynamical matrix and and their harmonics.
A detailed analysis of nonlinear normal modes in packings
with single-sided Hertzian spring potentials will be pursued
in future studies using both wavelet and Fourier transform
analyses.
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