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We identify the local structural defects that control the non-affine displacement fields in jammed
disk packings subjected to athermal, quasistatic (AQS) simple shear. While complex non-affine
displacement fields typically occur during simple shear, isolated effective quadrupoles are also ob-
served and their probability increases with increasing pressure. We show that the emergence of an
isolated effective quadrupole requires the breaking of an interparticle contact that is aligned with
low-frequency, spatially extended vibrational modes. Since the Eshelby inhomogeneity problem
gives rise to quadrupolar displacement fields in continuum materials, we reformulate and implement
Eshelby’s equivalent inclusion method (EIM) for jammed disk packings. Using EIM, we show that
we can reconstruct the non-affine displacement fields for jammed disk packings in response to ap-
plied shear as a sum of discrete Eshelby-like defects that are caused by mismatches in the local
stiffnesses of triangles formed from Delaunay triangulation of the disk centers.

I. INTRODUCTION

The response of disordered particulate systems to ap-
plied simple shear is spatiotemporally complex. The
shear stress versus shear strain includes quasi-linear elas-
tic segments of differing lengths that are punctuated
by shear stress drops over a range of sizes, which indi-
cate particle rearrangement events [1–7]. Experimental
and numerical studies have also shown that collective,
quadrupolar displacement fields occur during quasistatic
simple shear [1–4, 8–11]. This result is noteworthy since
quadrupolar displacement fields are solutions to the Es-
helby inhomogeneity problem for continuum materials
with inclusions that have different elastic constants than
the surrounding matrix [12]. This connection highlights
the possible important role of the Eshelby solutions in
describing localized plastic rearrangement events even in
disordered, particulate systems [10, 13–15]. Currently,
we do not know the frequency with which quadrupolar
displacement fields occur in sheared particulate systems
as a function of shear strain and packing fraction. For
example, do quadrupolar displacement fields occur uni-
formly over the quasi-elastic strain segments or do they
occur more frequently near large shear stress drops?

The mechanical response of crystalline solids is deter-
mined by the strength and location of topological defects,
such as point defects and dislocations [16]. However,
identifying the structural defects in disordered particu-
late systems that control the mechanical response is more
challenging. Motivated by early experimental studies on
bubble rafts, Argon coined the term shear transforma-
tion zones (STZs) to describe regions of large non-affine
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particle motion in disordered materials [17]. Falk and
Langer pictured the STZs as structural defects in dis-
ordered solids that generate large non-affine particle dis-
placements [18]. However, currently there is no quantita-
tive framework that directly links localized structural de-
fects in disordered particulate solids to quadrupolar-like
and other coherent structures in non-affine displacement
fields [19].

In addition, numerous studies have shown that “soft
spots”, or quasi-localized modes of the dynamical matrix
with small eigenvalues, influence the mechanical response
of amorphous solids [20, 21]. These modes are often
quadrupolar-like in structure [1, 22] and are frequently
excited during applied shear [21, 23]. However, focusing
on modes of the dynamical matrix de-emphasizes the role
of local structural defects in determining the non-affine
displacement fields. In particular, the connection be-
tween local structural defects and the activation of “soft
spots” is missing [24]. For example, it is not known what
type of localized structural defect in a disordered par-
ticulate solid generates a single Eshelby-like quadrupolar
displacement field.

In this article, we develop a novel method to calcu-
late the non-affine displacement fields of model granular
solids (i.e., frictionless, bidisperse disks that interact via
purely repulsive spring forces) in response to athermal,
quasistatic simple shear in terms of Eshelby-like triangle
“defects”. These defects represent the differences in the
stiffness matrix of each triangle in the jammed disk pack-
ing relative to that from a reference unstressed network
generated from Delaunay triangulation of the disk cen-
ters. In general, the stiffness matrix of a triangle can dif-
fer from that for the reference network due to missing in-
terparticle contacts and pre-stress. A benefit of this new
approach is that it emphasizes that structural defects in
disordered particulate materials cause the non-affine dis-
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placement fields. Each triangle defect contributes a single
quadrupolar-like displacement field (with a given ampli-
tude and orientation) to the total displacement field in
response to the applied simple shear strain. Thus, we
can sum the contributions from each triangle defect (in-
cluding interactions between them) to reconstruct the to-
tal non-affine displacement field after each simple shear
strain increment is applied.

This article presents several important results. First,
we show that the non-affine displacement fields of
jammed bidisperse disk packings in response to ather-
mal, quasistatic simple shear can be fit to the sum of
effective quadrupolar displacement fields using solutions
of the Eshelby inclusion problem for continuum materi-
als [10]. At low pressures near jamming onset, isolated
effective quadrupoles do not occur. However, as the pres-
sure increases, the probability for a few isolated effec-
tive quadrupoles to occur increases, and grows rapidly
when the fraction of missing contacts Nm/(N + 1) ≲
0.05, where Nm = 3N − Nc and Nc is the number of
distinct interparticle contacts among N particles. We
find that an isolated effective quadrupole only occurs
after breaking an interparticle contact that is aligned
with the low-frequency modes of the dynamical matrix
before the applied deformation, and the center of the
quadrupole is located near the broken contact. Isolated
effective quadrupoles do not occur when interparticle
contacts form. Moreover, we demonstrate that if we ar-
tificially “heal” pre-existing missing contacts (relative to
the reference Delaunay-triangulated network) near the
quadrupole center, the effective quadrupolar displace-
ment field will not be activated by the applied simple
shear.

The remainder of the article is organized as follows. In
Sec. II, we describe the numerical techniques for generat-
ing jammed bidisperse disk packings over a range of pres-
sures, applying athermal, quasistatic simple shear to the
jammed disk packings, and quantifying the non-affine dis-
placement fields in response to the applied simple shear.
In Sec. III, we present the main results including: (a)
The probability that isolated effective quadrupoles oc-
cur during the athermal, quasistatic simple shear as a
function of pressure; (b) A reformulation of the Eshelby
inclusion and inhomogeneity problems for a single struc-
tural defect in particulate systems; (c) The solution of the
multiple Eshelby inclusions and inhomogeneity problems
for particulate systems; and (d) The identification of the
specific interparticle contacts that when broken during
applied shear will generate displacement fields with a sin-
gle effective quadrupole. A summary of the particle-scale
origins of single effective quadrupolar displacement fields
and promising future research directions, such as extend-
ing the Eshelby inclusion and inhomogeneity problems to
discrete systems with long-range attractive interactions
and in three dimensions, are presented in Sec. IV. We
also include five Appendices. In Appendix A, we provide
a brief summary of the Eshelby inclusion and inhomo-
geneity problems for both continuum and discrete par-

ticulate systems. In Appendix B, we calculate the stiff-
ness tensor for a single Delaunay triangle in a jammed
disk packing. In Appendix C, we define the global stiff-
ness matrix in terms of the local triangle stiffness tensors.
Appendix D describes the parameter χ, which quantifies
the change in the lowest eigenvalue of the dynamical ma-
trix of jammed disk packings before and after a change in
the interparticle contact network. Appendix E shows the
distribution of the participation ratio ρ of the eigenvec-
tors e⃗k of the dynamical matrix prior to a contact break
and illustrates how ρ(e⃗k) changes before and after the
contact break.

II. METHODS

The methods section is divided into two subsections.
In Sec. IIA, we describe the numerical techniques for
generating jammed bidisperse disk packings as a func-
tion of pressure and deforming them using athermal, qua-
sistatic simple shear. In Sec. II B, we describe our meth-
ods for quantifying the non-affine displacement fields of
the jammed disk packings following each simple shear
strain increment. In particular, we fit the non-affine dis-
placement fields to a linear combination of the fields gen-
erated from Eshelby inclusions in an elastic matrix with
specified strengths, locations, and orientations.

A. Generation and athermal, quasistatic simple
shear of jammed disk packings

We investigate the mechanical response of jammed
packings of N frictionless bidisperse disks (with the same
mass m) in two dimensions. The disks interact via the
pairwise, purely repulsive linear spring potential,

Uij(rij) =
kij
2

(σij − rij)
2
Θ(1− rij/σij) , (1)

where rij is the center-to-center distance between disks i
and j, σij = (σi +σj)/2 is the average of their diameters
σi and σj , and Θ(·) is the Heaviside step function that
prevents interactions between non-contacting disks. For
most cases, the spring constant kij equals a fixed value
k for overlapping disk pairs and is zero otherwise.
The packings consist of bidisperse mixtures with equal

numbers of large and small disks, with a diameter ra-
tio of σl/σs = 1.4. This bidisperse particle size dis-
tribution is widely used in both simulations and ex-
periments [25–27] to prevent crystallization [28]. We
use m, σs, k, and kσ2

s as the units for mass, length,
stress, and energy, respectively. To generate jammed
disk packings, we randomly place N/2 large and N/2
small disks in a parallellogram-shaped box with side
lengths Lx and Ly and periodic boundary conditions
in the x- and y-directions at an initial packing fraction
ϕ0 = Nπ(σ2

l + σ2
s)/(8LxLy) = 0.1. (Note that this ex-

pression for the packing fraction double-counts the areas
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of overlap between disks in packings that are overcom-
pressed.) To obtain a jammed packing at a given pres-
sure, we perform a sequence of compression steps ∆ϕ
(starting with the random disk configuration at ϕ0 = 0.1)
with each step followed by minimization [29] of the to-
tal potential energy U =

∑
i>j Uij(rij) until the pressure

p = (Σxx + Σyy)/2 satisfies |p/p0 − 1| < 10−4, where p0
is the target pressure,

Σαβ =
1

LxLy

∑

i>j

rijαfijβ (2)

is the virial stress tensor, rijα is the α-component of the
separation vector r⃗ij , and fijβ is the β-component of the

interparticle force, f⃗ij = −(dUij/drij)r̂ij . We first gener-
ate jammed disk packings at low pressure p = 10−6 (with
a packing fraction ϕ ∼ 0.84) and then successively com-
press each packing to a target pressure that spans the
range 10−6 ≤ p0 ≤ 0.32. For all packings over this range
of pressure, we apply athermal, quasistatic simple shear
(where x is the shear direction and y is the shear-gradient
direction) with a strain increment of ∆γ = 2 × 10−5 to
a total strain of γ = 0.2. At each strain increment, the
simple shear deformation

ϵA =

[
0 ∆γ
0 0

]
(3)

is first applied to both the boundary of the simulation
box and the disk positions, i.e., a⃗A1 = (ϵA + I )⃗a1, a⃗

A
2 =

(ϵA + I )⃗a2, and r⃗Ai = (ϵA + I)r⃗i, where I is the 2 × 2
identity matrix, a⃗1 = [Lx, 0]

T and a⃗2 = [γLy,Ly]
T are

the vectors that define the boundary vertexes at strain γ,
and r⃗i is the position of disk i. Then, minimization of the
total potential energy of the disk packing is performed,
while the box boundaries are fixed. Since the deformation
protocol is strain-controlled, there is no work associated
with the boundary motion. Thus, the total energy of
the system is the elastic strain energy given by the total
potential energy U .

B. Characterization of the non-affine displacement
fields

We define the non-affine displacement of disk i in a
jammed disk packing undergoing athermal, quasistatic
simple shear (where x is the shear direction and y is the
shear-gradient direction) as

[
uix

uiy

]
=

[
r′ix − rix − riy∆γ

r′iy − riy

]
, (4)

where [rix, riy]
T and [r′ix, r

′
iy]

T are the positions of disk
i before and after an applied strain increment ∆γ (fol-
lowed by minimization of the total potential energy),
subject to shear periodic boundary conditions. The
non-affine displacement field for the packing is given by
u⃗ = [u1x, u1y, u2x, u2y, ..., uNx, uNy]

T .

In general, the non-affine displacement fields of
jammed disk packings in response to applied simple shear
are disordered. Below, we investigate the probability that
isolated quadrupolar non-affine displacement fields occur
in jammed disk packings during simple shear as a func-
tion of pressure. We determine when isolated effective
quadrupoles occur by fitting the non-affine displacement
field in response to a small increment of simple shear
strain to a linear superposition of the solutions of Es-
helby inclusions under pure shear eigenstrains within an
infinite, homogeneous elastic matrix with plane strain
conditions [10],

ux(r⃗) =
ϵ0a

2

4(1− ν)r2

[(
2− 4ν +

a2

r2

)
(x cos 2α+ y sin 2α)

+

(
1− a2

r2

)
(x2 − y2) cos 2α+ 2xy sin 2α

r2
2x

]
,

(5a)

uy(r⃗) =
ϵ0a

2

4(1− ν)r2

[(
2− 4ν +

a2

r2

)
(x sin 2α− y cos 2α)

+

(
1− a2

r2

)
(x2 − y2) cos 2α+ 2xy sin 2α

r2
2y

]
,

(5b)

where ϵ0 is the overall magnitude of the strain, ν is the
Poisson’s ratio of the surrounding elastic matrix, a is the
radius of the circular inclusion, r⃗ = [x, y]T is the position
in the packing relative to the center of the inclusion, and
α is the orientation of the quadrupole. To account for
periodic boundary conditions, we compute the non-affine
displacement of each particle i induced by an inclusion q
summed over all eight periodically replicated images in
addition to the disk packing in the central box:

[
uix

uiy

]

q

=

8∑

k=0

[
ux(r⃗

(k)
i )

uy(r⃗
(k)
i )

]

q

Θ

(
3

2

√
LxLy −

∥∥∥r⃗(k)i

∥∥∥
)
, (6)

where the superscript (k) refers to the central box (0) and

its periodically replicated images (1), (2), .., (8), r⃗
(k)
i de-

notes the position relative to the center of the inclusion in

the central box, and ∥X⃗∥ indicates the magnitude of the

vector X⃗. The cutoff of 3
√
LxLy/2 in the distance from

the center of the quadrupole was selected to maximize the
agreement between the non-affine displacement field gen-
erated from a single quadrupole in Eq. 5 summed over the
central and image boxes and the results from athermal,
quasistatic simple shear. Assuming that neff inclusions
are located in the central box and they interact linearly,
the total inclusion-induced non-affine displacement field
of each particle i is

[
uix

uiy

]

T

=

neff∑

q=1

[
uix

uiy

]

q

. (7)

To quantify the number of effective quadrupoles in a
given displacement field, we initially place a large number
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FIG. 1. (a) Shear stress Σ plotted versus shear strain γ for a
bidisperse mixture (diameter ratio σl/σs = 1.4) of N = 2048
disks at an initial pressure of p = 0.1 (ϕ = 1.0) undergo-
ing athermal, quasistatic simple shear with strain increment
∆γ = 2 × 10−5. The data is shaded from violet to dark red
as the fraction of missing contacts, Nm/(N + 1), increases.
The black arrows in panels (b) and (c) show the correspond-
ing non-affine displacement fields, u⃗b and u⃗c, at the strains
marked by the circle and ×, respectively, in (a). The × and
+ signs in panel (a) indicate the strain of the non-affine dis-
placement fields in Fig. 2 (a) and (b). u⃗b and u⃗c are magnified
by a factor of 40000 and 5000, respectively, to improve visu-
alization.

of quadrupoles (Eq. 5) at the positions of the negative
topological charges [30] of the non-affine displacement
field after a single strain step ∆γ of athermal, quasistatic
simple shear. Other quantities, such as the squared non-
affine displacement D2

min [18], the quadrupolar charge
Q [31], and the Burgers ring [32], can also be used to iden-
tify the centers of quadrupoles. The initial fit aligns the
non-affine displacement field from the simulations to that
in Eq. 7 with many quadrupoles. The quadrupoles with
the largest ∥u⃗q∥ are then used as initial conditions for fit-
ting the non-affine displacement field of the simulation to
a small number neff of effective quadrupoles. The qual-
ity of the effective quadrupolar representation is assessed
using the coefficient of determination 0 < R2(neff) < 1.

III. RESULTS

In this section, we characterize the non-affine displace-
ment fields for jammed disk packings that undergo ather-
mal, quasistatic simple shear. In Sec. III A, we first deter-
mine the probability that isolated effective quadrupoles

occur as a function of pressure, and show that the
probability increases strongly with pressure. To under-
stand the formation of single effective quadrupoles, in
Sec. III B, we introduce the Eshelby inclusion and inho-
mogeneity problems for continuum materials and then re-
formulate them for particulate systems, such as jammed
disk packings. In particular, we model each triangle
in the Delaunay triangulation of the disk packing as a
discrete Eshelby inclusion, where triangle stiffness mis-
matches induce localized non-affine displacements. In
Sec. III C, we describe a novel methodology for calcu-
lating the eigenstrains of individual Delaunay triangles
that are used to reconstruct the non-affine displacement
fields following a small shear strain increment. Our
analysis reveals that triangles with large eigenstrains
are concentrated near the centers of isolated effective
quadrupoles and that clusters of missing contacts (com-
pared to the Delaunay triangulation) near the centers of
effective quadrupoles control their formation and stabil-
ity. Finally, in Sec. IIID, we determine the necessary
conditions for the activation and dissolution of isolated
effective quadrupoles in the displacement field, which in-
volve the breaking and formation of particle contacts near
the center of the quadrupole.

A. Shear stress versus shear strain

In Fig. 1 (a), we show the shear stress Σ = −Σxy ver-
sus shear strain γ curve for jammed disk packings under-
going athermal, quasistatic simple shear. Σ(γ) possesses
quasi-linear elastic segments punctuated by sudden stress
drops [2]. In addition, the interparticle contact network
changes frequently during simple shear. In this work,
we focus on the mechanical response of jammed disk
packings within each quasi-elastic segment, not during
the stress drops, where the particle displacement fields
evolve significantly. At most strain values, the non-affine
displacement field u⃗ is disordered with no large-scale co-
herent structures (e.g. Fig. 1 (b)), whereas at particular
strains, a single isolated quadrupole can form as shown
in Fig. 1 (c). To quantify the probability with which iso-
lated effective quadrupoles occur in jammed disk pack-
ings during athermal, quasistatic simple shear, we fit u⃗
at each γ to a linear superposition of Eshelby-inclusion-
induced quadrupoles, as described in Sec. II B. In Fig. 2
(a), we show a non-affine displacement field that is well-
described by a single effective quadrupole neff = 1, while
the non-affine displacement field in Fig. 2 (b) is poorly
fit by a single effective quadrupole with R2(1) < 0.40.
Instead, it is better described by the sum of two effec-
tive quadrupoles (neff = 2) that contribute 45% and 55%
to the total non-affine displacement field, respectively,
with R2(2) = 0.79. We classify the fits to a super-
position of quadrupoles as successful when they satisfy
R2(neff) > R2

cut, where R2
cut = 0.7.

In Fig. 3 (a), we determine the probability P (R2 > 0.7)
that the non-affine displacement fields during athermal,
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FIG. 2. Non-affine displacement fields (orange-filled arrows)
from the simulations of athermal, quasistatic simple shear in
Fig. 1: (a) at γ = 0.057 fit to a single effective quadrupole
with R2(1) = 0.87 and (b) at γ = 0.039 fit to two effec-
tive quadrupolar structures with R2(2) = 0.79. The fitted
quadrupolar non-affine displacement fields are represented by
blue-filled arrows, with their centers marked by filled green
circles. When the simulation and fitted non-affine displace-
ment fields overlap, the arrows are shaed black. In (b), the
quadrupole on the right (darker green) and the one on the left
(lighter green) contribute 55% and 45% to the total non-affine
displacement field, respectively. The dashed lines in both pan-
els define the distance dqij from the center of quadrupole q to
the center of the bond between disks i and j.

quasistatic simple shear can be successfully fit to either
one or the sum of two effective quadrupoles. Note that
the non-affine displacement fields are similar for jammed
disk packings within the same geometrical family (i.e.,
disk packings at different γ, but they possess the same
interparticle contact network [33]). Thus, in Fig. 3 (a),
we only present results for P (R2 > 0.7) for disk pack-
ings at the beginning of each geometrical family over
the full range of γ. In general, P (R2 > 0.7) increases
with increasing pressure, but there is a sharp increase in
P (R2 > 0.7) for p ≳ 0.2.

To understand the structural origin of the coherent
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FIG. 3. (a) Probability that the fitted non-affine displace-
ment field u⃗ possesses R2(neff) > 0.7 plotted as a function
of pressure p. The data is obtained by fitting u⃗ at the be-
ginning of each quasi-elastic segment of shear stress versus
strain to the non-affine displacement field generated by either
one (neff = 1, circles) or two (neff = 2, squares) effective
quadrupoles. (See Eq. 6.) The average fractional number of
missing contacts ⟨Nm/(N + 1)⟩ at each p is displayed on the
top axis. (b) ⟨Nm/(N + 1)⟩ plotted as a function of p for the
same data in (a).

non-affine displacement fields with only one or two effec-
tive quadrupoles, we apply radical Voronoi tessellation
on each disk packing to obtain the dual Delaunay trian-
gulations. For a packing with N disks in a 2D periodic
box, the Delaunay triangulation consists of 2N triangles
with a total of 3N edges. The network formed by the
disk centers and Delaunay edges provides a fully con-
nected reference state for each disk packing. For an iso-
static packing at low pressures, the number of interparti-
cle contacts is Nc = 2N−1, which matches the number of
degrees of freedom, leaving Nm = N+1 missing contacts
compared to the fully connected Delaunay network. As
the pressure increases, the number of missing contacts
decreases monotonically, as shown in Fig. 3 (b). At low
pressures p ≲ 0.01 near jamming onset, isolated effec-
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tive quadrupoles are not observed. Once the fractional
number of missing contacts ⟨Nm/(N + 1)⟩ ≲ 5%, the
probability P (R2 > 0.7) increases rapidly. At the small-
est values of ⟨Nm/(N+1)⟩, non-affine displacement fields
with one or two effective quadrupoles become prevalent,
with P (R2(1) > 0.7) = 33% and P (R2(2) > 0.7) = 76%.
These results raise an important question: What

causes the formation of quadrupoles in the non-affine
displacement fields of jammed disk packings? To ad-
dress this question, in the next subsection, we analyze
the special case in which only a single contact is missing
in jammed disk packings relative to the fully connected
Delaunay network and relate the occurrence of quadrupo-
lar displacement fields in jammed disk packings to the
Eshelby inclusion and inhomogeneity problems in con-
tinuum materials.

B. Eshelby inclusion and inhomogeneity problems

In Sec. IIIA, we showed that isolated quadrupolar
displacement fields are observed across a range of pres-
sures in jammed disk packings, but they are most fre-
quently found in the limit of high pressures (cf. Fig. 3).
Also, prior studies have shown that the non-affine dis-
placement fields in amorphous solids that arise from lo-
cal rearrangements during applied shear often resemble
the quadrupolar-like solutions to the continuum Eshelby
inclusion problem [1–4, 8–11], where a uniform instan-
taneous plastic strain is applied to an elliptical inclu-
sion within an infinite elastic material. Elliptical re-
gions undergoing instantaneous plastic strains in con-
tinuum solids arise in applications ranging from ther-
mal expansion and twinning in crystals [12], martensitic
transformations [34], and the mechanical response of con-
crete [35]. Solutions to the Eshelby inclusion problem can
also be used to solve the Eshelby inhomogeneity problem,
where the stiffness of the elliptical region differs from that
of the surrounding matrix material. To further illustrate
the analogy between the quadrupolar displacement fields
observed in jammed disk packings and continuum solu-
tions to the Eshelby inclusion and inhomogeneity prob-
lems, we examine two special cases of jammed disk pack-
ings, as shown in Fig. 4, that contain only one missing
contact with respect to the fully connected network gen-
erated from Delaunay triangulation of the disk centers.

In Fig 4 (a), we show the displacement field after a sin-
gle simple shear strain step (followed by energy minimiza-
tion) applied to a nearly crystalline packing with a small
polydispersity in disk diameters ∆σ/⟨σ⟩ = 6× 10−4 and
one missing contact that is oriented at an angle α = 2π/3
relative to the shear direction. The displacement field is
quadrupolar, centered at the missing contact, and ori-
ented along the direction of the missing contact. Simi-
lar to the Eshelby inhomogeneity problem for continuum
materials, the single missing contact in the discrete sys-
tem induces a stark mismatch in elastic properties be-
tween the site of the missing bond and the rest of the

(a)

(b)

FIG. 4. Non-affine displacement field u⃗ (black arrows) in re-
sponse to a single simple shear step ∆γ = 10−5 (followed by
energy minimization) applied to jammed disk packings: (a) A
nearly crystalline packing at pressure p = 1.8× 10−3, with a
polydispersity of ∆σ/⟨σ⟩ = 6× 10−4 in diameter and a pack-
ing fraction of ϕ = 0.9085; and (b) A disordered bidisperse
disk packing at p = 0.285 and ϕ = 1.2. In both cases, the
system contains Nc = 3N − 1 interparticle contacts, i.e., one
missing contact (highlighted by a red thick line) compared
to the fully connected Delaunay network. The angle between
the missing contact and the shear direction is (a) α = 2π/3
and (b) 0.4π.

system. A similar phenomenon is observed in disordered
jammed disk packings, as shown in Fig. 4 (b). Despite
the amorphous structure, a missing contact (relative to
the fully connected Delaunay network) gives rise to a
quadrupolar displacement field centered at the missing
contact.

Since the stiffness tensor contains different components
that correspond to different modes of deformation, in
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FIG. 5. Magnitude of the non-affine displacement field ∥u⃗∥,
normalized by the simple shear strain increment ∆γ, for
jammed disk packings with one missing contact (relative to
the Delaunay-triangulated network) plotted as a function of
the angle α of the missing bond relative to the shear direc-
tion. The circles are colored by R2(1) (increasing from violet
to dark red) from fits of u⃗ to the displacement field for a single
effective quadrupole (Eq. 6). The squares indicate the aver-
age ⟨∥u⃗∥⟩/∆γ at each α.

general, not all mismatches in local stiffness are activated
by a given applied strain. For example, a quadrupolar
displacement field will only be triggered when the region
of the local stiffness mismatch is activated by the applied
strain. In Fig. 5, we show the magnitudes of the non-
affine displacement field ∥u⃗∥/∆γ in disk packings with
a single missing contact (relative to the Delaunay trian-
gulated network) after a single simple shear strain step
plotted as a function of the orientation α of the miss-
ing bond. The average magnitude ⟨∥u⃗∥⟩/∆γ has a peak
at α = π/4 and is minimal at α = 0 and π/2. Large
non-affine displacements do not occur when the missing
bond is either parallel or perpendicular to the shear di-
rection. As a result, R2(1) ∼ 0 for α = 0 and π/2 when
fitting u⃗ to the non-affine displacement field for a single
effective quadrupole, indicating that quadrupoles are not
activated at these angles. The emergence of quadrupo-
lar displacement fields centered at missing contacts and
aligned with the shear direction supports a theoretical
description of non-affine displacement fields in jammed
disk packings that is based on Eshelby’s inclusion and
inhomogeneity problems.

The occurrence of quadrupoles in jammed disk pack-
ings raises an important question: Can the Eshelby inclu-
sion problem for continuum materials be reformulated for
discrete particulate systems to explain the emergence of
isolated quadrupolar displacement fields, as well as more
general disordered displacement fields? A key challenge
in addressing this question is the fact that jammed disk
packings exhibit locally varying elastic moduli [36], and
thus multiple interacting Eshelby inclusions with differ-
ing stiffness must be embedded within the background

Lm

Li
Lj

lilj

lm

(a)

(b)

(c)

(d)
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FIG. 6. A schematic that describes the Eshelby inclusion
problem for a triangular spring network. (a) A triangular in-
clusion is removed from the spring network with initial equi-
librium rest lengths Li0 = Li. (b) As an example, a pure
shear eigenstrain ϵ⃗∆,∗ is applied to the triangle and the equi-
librium rest lengths of the springs are set to the current tri-
angle edge lengths Li0 = li (solid lines). The original trian-
gle is indicated by the dashed lines. (c) An external force

f⃗∆
ext = (A△)TC△ϵ⃗△,∗ (Eq. 41) is applied to the vertices to
push the triangle back into its original shape, where C△ and
A△ are the stiffness and gradient matrices for the triangle.
(d) After reinserting the triangle back into the network and
allowing the system to relax, the triangle will have a new
strain ϵ⃗∆,c (indicated by the solid black lines), which can be

calculated from ϵ⃗c = A
(
ATCA

)−1
f⃗ext. The global strain

vector ϵ⃗c contains the strains of all triangles in the network

(Eq. C5). f⃗ext is a global force 2N × 1 vector containing

forces f⃗△
ext on the red nodes in (d) and zeros elsewhere. A is

the global gradient matrix defined in terms of A△ in Eq. C1.

material. To lay the groundwork for a complete solu-
tion to the discrete Eshelby inclusion and inhomogeneity
problems, we begin by introducing the continuum Es-
helby inclusion and inhomogeneity problems and then
discuss how they can be reformulated in the case of par-
ticulate systems, such as jammed disk packings.

The classical Eshelby inclusion problem assumes that
an elliptical region within an infinite, elastic material
is removed from the matrix material and undergoes a
known uniform, plastic “eigenstrain” ϵ∗ij [12], specified by
three values for symmetric strains in two dimensions.
A traction is then applied to the surface of the iso-
lated, strained inclusion to deform it back into its original
shape. The inclusion is then reinserted into the matrix
and the system is allowed to relax. Due to the surround-
ing elastic matrix, stresses are generated in both the
inclusion and matrix, yielding a final, or “constrained”
strain ϵcij that differs from ϵ∗ij . The constrained strain
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FIG. 7. A schematic illustrating the displacement field solution, u⃗
(
k1/k0, k2/k0, k3/k0, k4/k0, ..., k3N/k0; t1, ..., t3N ; ϵA; ϵ△1,1, ϵ

△
1,2,

ϵ△1,3, ϵ
△
1,4

)
, to the Eshelby inhomogeneity problem for a triangle with three modified spring constants in a spring network

under a global pure shear. (a) We decompose the displacement field solution to a global pure shear strain ϵA of magnitude
ϵA = 10−6 applied to a spring network containing three bonds with spring constants (k1/k0 = 2, k2/k0 = 3, and k3/k0 = 4)
that differ from those of the rest of the network k0, into (b) the displacement field from the global strain ϵA on the spring

network where all spring constants are k0 (Eq. 46) plus (c) the displacement field resulting from local eigenstrains ϵ△1,1, ϵ
△
1,2,

ϵ△1,3, and ϵ△1,4 on the four triangles that share the modified bonds, where again all spring constants are k0, (Eq. 52). In (c), we
show the von Mises strain of the local eigenstrain matrices (cf. Eq. 60). In the case presented here, the spring network does
not have pre-stress, and thus the bond tensions t1 = 0, ..., t3N = 0.

and plastic eigenstrain are related via the Eshelby ten-
sor: ϵcij = Sijklϵ

∗
kl, where Sijkl is a function of the stiff-

ness matrix of the material and geometrical properties of
the elliptical inclusion [37]. (See Fig. 17 in Appendix A
for additional details.)

The Eshelby inclusion problem can also be formulated
for jammed disk packings. For example, we can form a
spring network based on the Delaunay triangulation of
the centers of jammed disk packings. The analog in a
discrete particulate system to an elliptical inclusion in a
continuum system is a Delaunay triangle of the spring
network, since a triangle contains the minimum number
of degrees of freedom to define a stress and strain ten-
sor in two dimensions. A schematic describing similar
operations to determine the constrained strain for the
Eshelby inclusion problem in a triangular spring network
is shown in Fig. 6. We first remove a triangle from the
network (panel (a)), plastically deform the triangle by
the strain ϵ⃗∆

∗
, which is a row vector with four entries to

describe non-symmetric strains locally (panel (b)), then
apply forces to the vertices to push the triangle back
into its original shape (panel (c)), reinsert it back into
the network, and allow the system to relax (panel (d)).
The final strain of the triangle, ϵ⃗∆

c

, will be different from
ϵ⃗∆

∗
due to the surrounding network.

The solution to the Eshelby inclusion problem for con-
tinuum materials can be used to construct the displace-
ment field for the Eshelby inhomogeneity, or elastic mis-
match, problem. The Eshelby inhomogeneity problem
embeds an ellipsoidal inclusion within an infinite elastic
matrix that has a different stiffness tensor from that of

the inclusion, and an affine strain is imposed on the sys-
tem. (See Fig. 18 in Appendix A.) Using Eshelby’s equiv-
alent inclusion method (EIM), the displacement field so-
lution to the Eshelby inhomogeneity problem can be writ-
ten as a sum of the displacement field from the affine
strain ϵAkl on the elastic matrix without the inclusion plus
the displacement field solution to the Eshelby inclusion
problem with eigenstrain determined by

[(
CI

ijkl − CM
ijkl

)
Sklmn + CM

ijmn

]
ϵ∗mn =

(
CM

ijkl − CI
ijkl

)
ϵAkl, (8)

where CM
ijkl and CI

ijkl are the stiffness tensors for the

matrix and inclusion, respectively [38]. Note that the
eigenstrain is applied to the reference system with uni-
form stiffness tensors.
We can also apply a similar methodology for deter-

mining the displacement field for a discrete system (i.e.
a spring network) under an affine pure shear ϵA, where
the spring constants of the three bonds in a single tri-
angle differ from those of the rest of the network. A
schematic showing the EIM solution procedure to the
Eshelby inhomogeneity problem in a triangular spring
network is shown in Fig. 7. We first introduce an elastic
mismatch by resetting the spring constants (k1/k0 = 2,
k2/k0 = 3, and k3/k0 = 4) of three springs (panel (a)),
which changes the stiffness matrices of the four trian-
gles that share the bonds with modified spring constants.
Note that after introducing this elastic mismatch, the
network is still in equilibrium. An affine pure shear strain
ϵA is then applied and the elastic mismatch will generate
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a non-affine displacement field u⃗. The total displace-
ment field is the sum of the global strain of the uniform
spring network (panel b) (affine contribution) plus four
eigenstrain perturbations applied to the triangles where
all bonds are uniform with spring constant k0 = k (non-
affine contribution).

C. Eshelby’s equivalent inclusion method for
jammed disk packings

In Sec. III B, we showed that Eshelby’s equivalent in-
clusion method (EIM) can be used to solve for the non-
affine displacement field in continuum materials that con-
tain a single inclusion (with a different stiffness tensor
from the background matrix) and are under an applied
affine strain. In particular, applying the eigenstrain ϵ∗mn

in Eq. 8 to the inclusion (where all elastic properties are
uniform) yields the correct displacement field. Similar
to the Eshelby inclusion and inhomogeneity problems in
continuum materials, we can consider a spring network
where the spring constants of a single triangle have been
changed relative to the rest of the network, as shown in
Fig. 7. This change in stiffness gives rise to local eigen-
strains on the central and neighboring triangles. In this
subsection, we present a re-formulation of the EIM that
enables the calculation of the eigenstrains that arise from
differences in the triangle stiffnesses. Note that the con-
tinuum EIM is only formulated for systems containing
an isolated inclusion. The EIM is generally not used
for multiple, interacting inclusions in continuum materi-
als [39, 40]. However, the reformulated EIM described
below is valid for an arbitrary number of interacting tri-
angle inclusions in particulate systems, such as jammed
disk packings.

In the remainder of this subsection, we introduce a
methodology that will allow us to convert between sin-
gle triangle strains and stresses and between node forces
and displacements. To do this, we will calculate the indi-
vidual triangle stiffness matrices for the original jammed
packing and its reference network. We then derive the
global stiffness matrix (relating stiffness to force) and
gradient matrix (relating displacement to strain) for the
jammed packing and its reference network. We use these
global quantities to develop an EIM-like approach for
jammed disk packings that allows us to calculate the
eigenstrains, which reconstruct the non-affine displace-
ment field of the jammed disk packing for a given applied
affine strain.

1. Calculation of the stiffness matrices for triangles

To develop the EIM-like approach for jammed disk
packings, we first need to generate a reference “elastic
matrix” for each jammed packing at a given pressure p
and shear strain γ. To do this, we perform a Delaunay
triangulation of the disk centers at each p and γ. We form

a spring network with uniform spring constants k0 = k
using the connectivity of the triangulated network with
equilibrium bond lengths set to the bond lengths of the
network. Thus, for each jammed packing, we have the
original configuration and its reference network as shown
in Fig. 8 (a) and (b).

To calculate the triangle stiffness matrix, we will first
define the strain for a triangle with nodes i, j, and m and

sides defined by the vectors L⃗i, L⃗j , and L⃗m, as shown in
Fig. 9. We will then express the potential energy of a
triangle U△ in terms of the bond elongations and then
the triangle strain, expand the potential energy in terms
of the triangle strain, and identify the coefficients of the
second-order terms in strain as the stiffness matrix of the
triangle.

0.00

0.05

0.10

0.15

k~fijk(a)

(b)

FIG. 8. (a) A jammed bidisperse disk packing with N = 256
at pressure p = 0.1, γ = 0, and fraction of missing contacts
Nm/(N + 1) ≈ 0.27. The interparticle contacts are color-

coded by ||f⃗ij ||. The missing contacts are highlighted by dot-
ted lines. (b) The reference spring network obtained from
the Delaunay triangulation of the disk packing in (a). The
equilibrium bond lengths in (b) are set to the interparticle

separations in the network such that ∥f⃗ij∥ ≡ 0.

Using Eq. 1, we can write the potential energy for a
triangle in terms of interactions between each pair of ver-
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⃗lm

⃗u i

⃗u m

⃗u j

i
j

m

FIG. 9. Undeformed triangle with sides (solid arrows) defined

by the vectors L⃗i, L⃗j , and L⃗m. After the nodes i, j, and m are
are displaced by u⃗i, u⃗j , and u⃗m, the deformed sides (dashed

arrows) are defined by l⃗i, l⃗j , and l⃗m.

tices (or nodes),

U△ = Umj(rmj) + Uim(rim) + Uji(rji). (9)

We can then rewrite U△ in terms of the bond elongations
ei that are generated by the displacements of the triangle
nodes:

U△ =
1

2
kie

2
i +

1

2
kje

2
j +

1

2
kme2m, (10)

where the bond elongations are

ei = |r⃗mj − u⃗j + u⃗m| − σmj , (11)

and the spring constants are divided by two, ki = kmj/2,
kj = kim/2, km = kji/2, since each bond is shared by
two adjacent triangles. In Eq. 10, we assume that since
the jammed disk packings are overcompressed, they ex-
perience an effective linear spring interaction potential
with both attractive and repulsive interactions. Defining

the vectors l⃗i = r⃗mj − u⃗j + u⃗m and L⃗i = r⃗mj to represent
the deformed and undeformed node positions of side i,

respectively, we can rewrite the elongations as

ei =
∣∣∣⃗li
∣∣∣−
∣∣∣L⃗i

∣∣∣+ bi, (12)

where

bi = Li − Li0 (13)

and Li0 is the equilibrium length of the spring associated
with side i. However, we now need to relate the bond
elongations to the triangle strain:

ϵ△ =

[
ϵxx ϵxy
ϵyx ϵyy

]
= F△ − I, (14)

where the 2× 2 deformation gradient matrix for the tri-
angle F△ can be expressed using any two sides of the
deformed and undeformed triangles,

F△ =
[⃗
li l⃗j

] [
L⃗i L⃗j

]−1
(15)

and I is the 2× 2 identity matrix.
We can express the elongations in terms of the triangle

deformation gradient F∆ by calculating the change in the
square of the length of side i of the triangle:

∣∣∣⃗li
∣∣∣
2

−
∣∣∣L⃗i

∣∣∣
2

=
(
F△L⃗i

)
·
(
F△L⃗i

)
− L⃗i · L⃗i (16a)

= L⃗T
i

(
(F△)TF∆ − I

)
L⃗i. (16b)

By rearranging Eq. 12, we can substitute

∣∣∣⃗li
∣∣∣ = ei +

∣∣∣L⃗i

∣∣∣− bi (17)

into Eq. 16b, which yields

(
ei +

∣∣∣L⃗i

∣∣∣− bi

)2
= L⃗T

i

(
(F△)TF△ − I

)
L⃗i +

∣∣∣L⃗i

∣∣∣
2

.

(18)
After solving Eq. 18 for ei, we find

ei =

(√
1 + L̂T

i

(
(F△)TF△ − I

)
L̂i − 1

)
Li + bi (19)

The potential energy in Eq. 10 for the triangle with nodes
i, j, and m can now be rewritten in terms of F△:

U△ =
∑

α

1

2
kαe

2
α =

∑

α

1

2
kα

[(√
1 + 2L̂T

α

[
1

2

(
(F△)TF△ − I

)]
L̂α − 1

)
Lα + bα

]2
, (20)

where α sums over the nodes i, j, and m.

Expanding the potential energy of the deformed triangle to second order in (F△ − I), we obtain

U△
(
F△ − I

)
= U△(0) + ∂U△

∂F△

∣∣∣∣∣
F△=I

(F△ − I) +(21)

1
2 (F

△ − I)T ∂2U△

∂(F△)T ∂F△

∣∣∣∣∣
F△=I

(F△ − I).
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The triangle stiffness tensor

C△ =
∂2U△

∂(F△)T∂F△

∣∣∣∣∣
F△=I

(22)

is a 2 × 2 × 2 × 2 tensor that can be written as a 4 × 4
matrix,

C△ =



cxxxx cxxyy cxxxy cxxyx
cyyxx cyyyy cyyxy cyyyx
cxyxx cxyyy cxyxy cxyyx
cyxxx cyxyy cyxxy cyxyx


 , (23)

where the components are given in Appendix B.
We will now introduce the methodology for expressing

the nodal displacements u⃗i, u⃗j , and u⃗m (Fig. 9) in terms
of the triangle strain ϵ△ (Eq. 14) using the gradient ma-

trix A△ and for relating ϵ△ to the triangle stress P△ via
the stiffness tensor (Eq. 22). Finally, we show that the
forces on the triangle nodes can be expressed in terms of
(A△)T and P△. These expressions will be important for
determining the triangle eigenstrains that when applied
to the reference network generate the nonaffine displace-
ment field.

To obtain the relation between the triangle strain and
nodal displacements, we substitute F△ (Eq. 15) into the
definition of the triangle strain in Eq. 14:

ϵ△ =
[⃗
li l⃗j

] [
L⃗i L⃗j

]−1 − I. (24)

The deformed sides l⃗i, l⃗j , and l⃗m, can be expressed in
terms of the nodal displacements using

l⃗i = L⃗i +∇
[
u⃗j

u⃗m

]
, (25)

where

∇ =
[
−I I

]
=

[
−1 0 1 0
0 −1 0 1

]
. (26)

We can then substitute Eq. 25 into Eq. 24 to obtain

ϵ△ =

[
L⃗i +∇

[
u⃗j

u⃗m

]
L⃗j +∇

[
u⃗m

u⃗i

]] [
L⃗i L⃗j

]−1 − I.

(27)
Eq. 27 shows that the nodal displacements are linearly
related to the triangle strain [41]:

ϵ⃗△ = A△u⃗△, (28)

where

A△ =
1

2A



−Lyi 0 Lyj 0 −Lym 0
0 Lxi 0 −Lxj 0 Lxm

Lxi 0 −Lxj 0 Lxm 0
0 −Lyi 0 Lyj 0 −Lym




(29)
is the 4× 6 gradient matrix and

A =
1

2

∣∣∣L⃗i × L⃗j

∣∣∣ (30)

is the area of the undeformed triangle. In Eq. 28, we
expressed the nodal displacements of the triangle as a
6× 1 column vector

u⃗△ =
[
u⃗T
i u⃗T

j u⃗T
m

]T
(31)

and used Voigt notation for the strain tensor, expressing
it as a 4× 1 column vector:

ϵ⃗△ =
[
ϵxx ϵyy ϵxy ϵyx

]T
. (32)

Thus, A△ acts as a gradient operator, converting dis-
placements of single nodes to the strain of the triangle.
The area term in the denominator of Eq. 29 arises due to
the inversion of

[
L⃗i L⃗j

]
in Eq. 27. We adopt the conven-

tion that node entries in A△ are ordered in a counter-
clockwise fashion, i.e., columns 1 and 2 include node i,
columns 3 and 4 include node j, and columns 5 and 6
include node m.
The first Piola-Kirchhoff stress tensor for a triangle is

obtained from the first derivative of the potential energy
with respect to the deformation gradient matrix [42],

P△ =
1

A
∂U△

∂F△ , (33)

which is related to the Cauchy (virial) stress tensor [42]:

σ△ = [det(F△)]−1P△(F△)T . (34)

The first-order approximation to the first Piola-Kirchhoff
stress resulting from the triangle strain ϵ⃗△ can be ob-
tained from the second and third terms of the expansion
of the potential energy in F△ (Eq. 21):

P̂
△
1 =

1

A
∂U△

∂F∆

∣∣∣∣∣
F△=I

+
1

AC△ϵ⃗△, (35)

where the first term, originally constructed as a 2 × 2
matrix, can be converted into a 4×1 column vector using
the convention

[
a b
c d

]
=
[
a d b c

]T
. (36)

We define

∆P△ ≡ P̂
△
1 − 1

A
∂U△

∂F△

∣∣∣∣∣
F△=I

=
1

AC△ϵ⃗△ (37)

and relabel ∆P△ = P△
1 since the second term in Eq. 37

does not depend on ϵ⃗△. We can then rewrite the change
in energy of a triangle to first order in strain using Eq. 37:

∆U△ = U△
(
F△ − I

)
− U△(0) = (F△ − I)TP△

1 A.

(38)
Using Eqs. 37 and 38, the resulting nodal forces to first
order in strain can be written as

f⃗△ = −∂(∆U△)

∂u⃗△ = −∂(F△)T

∂u⃗△ P△
1 A = −(A∆)T P⃗△

1 A,

(39)
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where the Voigt notation is used to express the change
in the first Piola-Kirchhoff stress

P⃗△
1 =

[
P△
1xx P△

1yy P△
1xy P△

1yx

]T
. (40)

Using Eqs. 28 and 37, we can rewrite the nodal forces in
terms of the displacements

f⃗△ = −(A△)TC△ϵ⃗△ = −(A△)TC△A△u⃗△, (41)

where (A△)T acts as the divergence operator in contin-

uum mechanics. An external force f⃗△
ext = −f⃗△ needs to

be applied on the triangle to balance the force f⃗△ in-
duced by the displacements u⃗△. Consequently, we can
solve for the displacements using Eq. 41,

u⃗△ =
[
(A△)TC△A△

]−1

f⃗△
ext. (42)

We show how to construct the global gradient matrix
A, stiffness matrix C, first Piola-Kirchhoff stress vector

P⃗1, strain vector ϵ⃗, and define an area matrix S for the
entire jammed packing from the corresponding local tri-
angle properties in Appendix C. These global quantities
are then used to formulate the EIM for spring networks
in the next section.

2. Equivalent inclusion method

As described in Fig. 7, we will decompose the response
to an affine shear strain applied to a jammed disk pack-
ing into the sum of two contributions (u⃗ = u⃗R + u⃗∗):
1) the displacement field u⃗R (associated with strain ϵ⃗R)
arising from an affine simple shear strain ϵ⃗A applied to
the reference network of the jammed disk packing, and 2)

the displacement field u⃗∗ arising from the eigenstrains ϵ⃗△1
applied to individual triangles in the reference network.

The strain ϵ⃗R has two parts: the affine strain ϵ⃗A ap-
plied to the reference network and the strain generated
from u⃗R after relaxation of the reference network under
the affine strain, i.e.

ϵ⃗R = Au⃗R + ϵ⃗A, (43)

where

ϵ⃗A =
[
(⃗ϵ△,A

1 )T (⃗ϵ△,A
2 )T · · · (⃗ϵ△,A

2N )T
]T

(44)

and each triangle ϵ⃗△,A contains the entries of ϵA (Eq. 14)
arranged as a vector according to Eq. 36.

The displacement field u⃗R, arising from the affine
strain ϵ⃗A applied to the reference network, can be cal-
culated by finding the first Piola-Kirchhoff stress gener-
ated from ϵ⃗A using Eq. 37, and then finding the resulting
forces from the stress using Eq. 39. Since the jammed
packings are in force balance,

−ATC0

(
Au⃗R + ϵ⃗A

)
= 0. (45)

We can then solve for the displacements in Eq. 45,

u⃗R = −
(
ATC0A

)−1

ATC0ϵ⃗A. (46)

For the reference network and jammed disk packing to
possess the same mechanical response, we enforce that
the total strain in the reference network ϵ⃗r and in the
jammed disk packing ϵ⃗p are equal, ϵ⃗r = ϵ⃗p ≡ ϵ⃗. We also

enforce that the stress in the reference network P⃗ 0
1 and

the jammed disk packing P⃗ ϵ
1 are equal. The stress in the

reference network is given by the stress associated with

the total strain P⃗ 0,ϵ
1 minus the stress associated with the

eigenstrain P⃗ 0,∗
1 :

P⃗ 0
1 = P⃗ 0,ϵ

1 − P⃗ 0,∗
1 = C0ϵ⃗S−1 − P⃗ 0,∗

1 . (47)

The stress in the jammed disk packing is generated from
elastic strains,

P⃗ ϵ
1 = C ϵ⃗S−1. (48)

Equating the stresses in the reference network and the
jammed disk packing yields

P⃗ 0,ϵ
1 − P⃗ 0,∗

1 = P⃗ ϵ
1 . (49)

We then solve Eq. 49 for the stresses associated with the
eigenstrain

P⃗ 0,∗
1 =

(
C0 −C

)
ϵ⃗S−1, (50)

where the total strain ϵ⃗ can be obtained by applying the
affine strain ϵ⃗A to the jammed disk packing and allowing
it to relax. Analogous to Eqs. 43 and 46, after relaxation,
the total strain in the jammed disk packing is

ϵ⃗ = −A
(
ATCA

)−1

ATC ϵ⃗A + ϵ⃗A. (51)

The displacements u⃗∗ can be obtained by first converting
the stresses P 0,∗

1 into forces using Eq. 39 and then cal-
culating the displacements in the reference network from
the forces using Eq. 42:

u⃗∗ =
(
ATC0A

)−1

AT P⃗ 0,∗
1 S. (52)

To understand the non-affine displacement field of
jammed disk packings in terms of triangle strains ap-
plied to a reference network, we now seek to calculate

the eigenstrains that will generate the stresses P⃗ 0,∗
1 . The

stresses P⃗ 0,∗
1 are in general asymmetric, but the stiffness

tensor of the reference network C0 to which the eigen-
strains are applied can only generate symmetric stresses.

Note that P⃗ 0,∗
1 contains all of the individual triangle

stresses P⃗△,∗
1 :

P⃗ 0,∗
1 =

[
(P⃗△,∗

1 )T (P⃗△,∗
2 )T · · · (P⃗△,∗

2N )T
]T

. (53)
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To resolve this issue, we can convert the triangle stresses

P⃗△,∗
1 within P⃗ 0,∗

1 into matrix form P△,∗
1 using Eq. 36 and

decompose P△,∗
1 into symmetric Q△,∗ and orthogonal

R△,∗ matrices [43]:

P△,∗
1 = R△,∗Q△,∗, (54)

where

Q△,∗ =

√
(P△,∗

1 )TP△,∗
1 (55)

and

R△,∗ = P△,∗
1 (Q△,∗)−1. (56)

Since Q△,∗ is symmetric, it can be generated by a strain

ϵ⃗△1 applied to a triangle in the reference network,

Q⃗△,∗ =
1

AC△,0ϵ⃗△1 . (57)

(Note that Q△,∗ has been converted back into vector

form Q⃗△,∗.) From Eq. 57, we can solve for the trian-
gle eigenstrains,

ϵ⃗△1 = A(C△,0)−1Q⃗△,∗. (58)

The expression in Eq. 58 allows us to reconstruct the
non-affine displacement field of jammed disk packings in
terms of localized eigenstrains applied to triangles in the
fully connected stress-free reference network. The result-
ing non-affine displacement field is exact in the limit of
small applied strains ∆γ → 0. Each triangle eigenstrain
corresponds to a stiffness mismatch between the jammed
disk packing and the reference network. The reference
network is nearly homogeneous in its elastic properties
and, unlike the corresponding jammed disk packing, it
does not possess localized low-frequency modes of the dy-
namical matrix [44]. Thus, the reference network is anal-
ogous to the reference elastic matrix in the continuum Es-
helby inhomogeneity problem. Each triangle eigenstrain
(e.g., arising from a missing contact), when applied to
the reference network, produces a quadrupolar-like dis-
placement field that is proportional to the magnitude of
the eigenstrain. The total non-affine displacement field
is thus the sum of the individual quadrupolar-like fields
with varying strengths and orientations.

To examine which triangle defects play a significant
role in determining the non-affine displacement field, we

first convert the triangle eigenstrain ϵ⃗△1 to matrix form

ϵ△1 through Eq. 36 and then calculate the corresponding
von Mises strain

ϵ△1 = ϵ△1,d + ϵ△1,hI, (59)

where the hydrostatic strain ϵ1,h = (ϵ1,xx+ ϵ1,yy)/2. The

von Mises strain ϵ△1,v is the square root of the second

invariant of the deviatoric strain ϵ△1,d,

ϵ△1,v =

√
1

2
tr
(
(ϵ△1,d)

2
)
. (60)
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FIG. 10. (a) and (b) Spatial map of the von Mises strain

ϵ△1,v scaled by the shear strain increment ∆γ (increasing from
violet to dark red) that generate the non-affine displacement
fields in Fig. 1 (b) and (c), respectively.

In Fig. 10 (a), we show a spatial map of ϵ△1,v for the

non-affine displacement field in Fig. 1 (b). The von-Mises
eigenstrains occur throughout the packing with many

large-ϵ△1,v regions, which correspond to regions where the
magnitude of the non-affine displacement field in Fig. 1
(b) is large. In contrast, in Fig. 10 (b), we observe a small

region of triangles with large ϵ△1,v, which corresponds to
the quadrupole-like structure in the non-affine displace-

ment field in Fig. 1 (c). The largest ϵ△1,v/∆γ ≳ 100 in

Fig. 10 (b) is significantly higher than that in Fig. 10 (a).
Using the EIM, we have shown that we can reconstruct
the non-affine displacement field using many interacting
triangle defects. Previous studies have discussed the dif-
ficulty in describing the core regions of quadrupolar-like
structures that occur in the non-affine displacement fields
of sheared glasses [45–48]. Using the method described
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FIG. 11. (a) Shear stress Σ versus shear strain γ (solid line)
for a jammed bidisperse disk packing. The circles indicate
Σ(γ) within the central quasi-elastic segment in the figure.
The single square and single triangle markers indicate the end
of the previous and the start of the next quasi-elastic segment.
The central quasi-elastic segment includes 5 geometrical fami-
lies (GFs), within which the jammed disk packings at different
strains possess the same interparticle contact network. The
endpoints of the geometrical families are highlighted by the
× markers. E and S indicate the end of GF 3 and the start
of GF 4. The transitions between geometrical families within
the same quasi-elastic segment involve the breaking or forma-
tion of a single contact. (b) Visualization of a portion of the
jammed disk packing in (a) at the beginning of the central
quasi-elastic segment. Interparticle contacts are depicted as
solid lines. The red double solid lines, labeled 1 and 2, indi-
cate the broken contacts that cause the transition from GF 1
to 2 and from GF 2 to 3. The magenta double dotted lines,
labeled 3 and 4, indicate the formation of contacts that cause
transitions from GF 3 to 4 and from GF 4 to 5.

here, we resolve the core regions of the quadrupole-like
structures in the displacement fields in terms of the tri-
angle strains.

D. Why do quadrupolar displacement fields occur
in jammed disk packings undergoing simple shear?

In Sec. III A, we studied the probability that iso-
lated effective quadrupolar displacement fields occur in
jammed disk packings during athermal, simple shear as

FIG. 12. Coefficient of determination R2
S(1) after fitting the

non-affine displacement field to Eq. 6 (for a single effective
quadrupole) at the beginning of the next geometrical fam-
ily plotted as a function of R2

E(1) after fitting the non-affine
displacement field at the end of the current geometrical fam-
ily for two cases: (a) the transition between two geometrical
families after a single contact is broken and (b) the transi-
tion between two geometrical families after a single contact is
formed. The symbols are color-coded based on the distance
dqij/

√
LxLy between the center of the altered contact and the

center of the single effective quadrupole, normalized by the
geometric mean of edge lengths of the boundary. Panels (a)
and (b) include 47, 209 and 35, 463 transitions between geo-
metrical families, respectively.

a function of pressure. We find that triangles with large
von Mises eigenstrains (calculated in Sec. III C 2) are
located near the centers of the effective quadrupoles.
However, can we predict the strain at which single ef-
fective quadrupolar displacement fields will occur be-
fore the strain is applied? As before, we focus on the
non-affine displacement fields that occur during changes
in the interparticle contact networks along quasi-elastic
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stress versus strain segments as shown in Fig. 11 (a).
Note that the changes in the interparticle contact net-
works in Fig. 11 (b) involve the breaking or forma-
tion of a single contact in the small shear strain incre-
ment limit (∆γ → 0) and these contact changes are re-
versible [33, 49]. Below, we will compare the behavior of
the non-affine displacement fields at the end (denoted by
E) of a given geometric family and the start (denoted by
S) of the next geometric family (excluding shear stress
drops). In the following, we present results for systems
with N = 2048 particles at an initial pressure of p = 0.1
prior to shear deformation. Comparable findings are ob-
served for other system sizes and pressures where single
effective quadrupoles emerge.

In Fig. 12, we show the results for fits to Eq. 5 of
the displacement field (quantified using the coefficient
of determination R2) in response to a single athermal,
simple shear strain increment along quasi-elastic stress
versus strain segments at the end of a given geomet-
ric family and start of the next one. As shown in
Fig. 12 (a), changes from disordered non-affine displace-
ment fields to isolated effective quadrupolar displacement
fields, where R2

E(1) at the end of a given geometrical
family is small and R2

S(1) at the start of the successive
geometrical family is large, occur predominantly after a
single contact breaks. We find that the single effective
quadrupole is centered near the broken contact, which
emphasizes the important role of contact breaking in gen-
erating quadrupolar structures in the non-affine displace-
ment fields. In contrast, we show in Fig. 12 (b) that the
formation of a new contact near the center of an effective
quadrupolar displacement field causes it to dissolve.

While contact breaking is necessary for the formation
of single effective quadrupoles, it is not always sufficient
for quadrupole formation, as illustrated in Fig. 12 (a). To
investigate this question, we show in Fig. 13 (a) the vari-
ation of R2

S(1) versus R2
E(1) following a contact break,

color-coded by χ, which quantifies the ratio of the lowest
non-zero eigenvalue of the dynamical matrix after and be-
fore a contact break. (The mathematical definition of χ
is provided in Appendix D.) We find that the formation
of an isolated effective quadrupole is correlated with rel-
atively small values of χ, which indicates that the broken
contact should be in close alignment with the eigenvec-
tors associated with small dynamical matrix eigenvalues
of the jammed disk packing before the contact break.

We also investigated the correlation of R2(1) for the
non-affine displacement fields at contact breaks with the
participation ratio of the eigenvectors of the dynamical
matrix,

ρ(e⃗k) =

(∑N
i=1 ∥e⃗k,i∥2

)2

N
∑N

i=1 ∥e⃗k,i∥4
, (61)

where e⃗k is the kth normalized eigenvector of the dy-
namical matrix corresponding to eigenvalue λk, and e⃗k,i
is the contribution to e⃗k from particle i. In Fig. 13 (b),
we plot the participation ratio ρ of the eigenvector before

FIG. 13. Coefficient of determination R2
S(1) after fitting the

non-affine displacement field to Eq. 6 (for a single effective
quadrupole) at the beginning of the next geometrical fam-
ily plotted as a function of R2

E(1) after fitting the non-affine
displacement field at the end of the current geometrical fam-
ily for transitions between geometrical families with a single
contact break (using the same data in Fig. 12 (a)). (a) The
symbols are color-coded based on χ, which quantifies the ra-
tio of the lowest non-zero eigenvalue of the dynamical matrix
after and before the breaking of a single contact. (b) The
symbols are color-coded based on the participation ratio ρ of
the eigenvector from the dynamical matrix before the contact
is broken that most closely aligns with the eigenvector of the
dynamical matrix corresponding to the smallest eigenvalue af-
ter the contact is broken.

the contact break e⃗k,E that most closely aligns with the
eigenvector corresponding to the smallest nonzero eigen-
value e⃗1,S (after contact breaking), i.e., we identify k such
that |e⃗k,E · e⃗1,S| is maximized. Note that data points
in Fig. 13 (b) with lower values of ρ are placed on top
of the other data points. The distribution of participa-
tion ratios in Fig. 13 (b) P (ρ) is shown in Fig. 20 in
Appendix E. We find that single effective quadrupoles
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FIG. 14. (a)-(d): Spatial maps of the four eigenvectors (corresponding to the four smallest nontrivial eigenvalues of the
dynamical matrix) for a jammed disk packing at the end of a geometrical family. The eigenvectors have participation ratios
ρ = 0.73, 0.53, 0.52, and 0.69 and phonon order parameters Ok = 0.89, 0.86, 0.69, and 0.89, respectively. (e)-(h): Spatial maps
of the four eigenvectors (corresponding to the four smallest nontrivial eigenvalues of the dynamical matrix) of the jammed
packing at the beginning of the new geometrical family following a single shear strain increment applied to the jammed packing
in panels (a)-(d). The transition between the two geometrical families involves the breaking of a single contact (with χ = 0.126)
given by the thick red line in each panel.

form when e⃗k,E has a relatively large value of ρ, i.e.,
when the eigenvector is extended rather than highly lo-
calized. These results emphasize that isolated effective
quadrupoles form during athermal, simple shear when
(1) the interparticle contact that breaks is aligned with
the low-frequency modes of the jammed disk packing be-
fore the contact break and (2) the low-frequency modes
of the jammed disk packing before the contact break are
extended rather than highly localized. We also quantified
the phonon order parameter 0 ≤ Ok ≤ 1 for each eigen-
mode, where Ok = 1 for a phonon-like mode and Ok = 0
for a mode that is non-phonon-like [50]. Our analysis fo-
cuses on cases in which breaking a single contact gives rise
to a single effective quadrupole, corresponding to tran-
sitions between geometrical families with R2

E(1) < 0.2
and R2

S(1) > 0.7 in Fig. 13. In Fig. 15, we show the
probability distributions of the phonon order parameter
for (1) the mode before a contact break that best aligns
with the lowest-frequency mode after the contact break
(P (Ok

E)) and (2) the lowest frequency mode after the
contact break (P (O1

S)). The values of Ok
E (before con-

tact breaking) are typically close to 1, with a distribu-
tion that is sharply peaked near 0.9. This result indi-
cates that these extended modes are phonon-like. After
the contact break, however, the lowest-frequency mode
becomes quasi-localized, with O1

S ∼ 0.45.

Figure 14 shows a spatial map of the four eigenvectors

that correspond to the four lowest nontrivial eigenvalues
across a geometrical family transition involving a single
contact break. Prior to the contact break, the non-affine
displacement field is disordered without a single or small
number of effective quadrupoles (i.e. R2

E(1) = 0.175).
In contrast, following the contact break, a single ef-
fective quadrupole forms in the displacement field with
R2

S(1) = 0.841. The newly broken contact has χ ≈ 0.126
with the eigenvectors of the dynamical matrix from the
jammed packing before the broken contact. As shown in
Figs. 14 (a)-(d), the low-frequency modes before the bro-
ken contact are extended with ρ > 0.5 and phonon-like
with Ok ≥ 0.69. After the contact break (Fig. 14 (e)-(h)),
the eigenvector e⃗1 corresponding to the lowest nontriv-
ial eigenvalue becomes highly localized at the location of
the broken contact, with a significantly reduced partici-
pation ratio of ρ = 0.054. This low-frequency eigenmode
is closely aligned with the corresponding non-affine dis-
placement field u⃗, i.e., |e⃗1 · u⃗|/∥u⃗∥ ≈ 0.998.

We have shown that a newly broken contact is the
primary trigger that gives rise to a single effective
quadrupole. How do existing missing contacts relative to
the fully connected Delaunay network (i.e., not the newly
broken contact) affect the formation of quadrupoles? In
the previous section, we demonstrated that Delaunay
triangles with large von Mises eigenstrains occur fre-
quently near the centers of isolated quadrupoles. Further,
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FIG. 15. Probability distribution P (Ok) of the phonon order
parameter for eigenmodes at transitions between geometrical
families with R2

E(1) < 0.2 and R2
S(1) > 0.7 in Fig. 13. P (Ok

E)
corresponds to the distribution for the vibrational mode be-
fore contact breaking that aligns most closely with the lowest-
frequency mode after the contact breaking. P (O1

S) shows the
corresponding distribution of the phonon order parameter of
the lowest-frequency mode after contact breaking.

the large-eigenstrain triangles typically have at least one
missing contact, which suggests that the missing contacts
(other than the one that triggers the quadrupole) may
play an important role in quadrupole formation. How-
ever, jammed disk packings contain many missing con-
tacts relative to the fully connected network. For exam-
ple, in the jammed disk packing in Fig. 10, there are
Nm = 556 missing contacts relative to the fully con-
nected network with 3N = 6144 interparticle contacts.
Thus, which of the many missing contacts associated with
the large-eigenstrain triangles are important for trigger-
ing and dissolving quadrupolar displacement fields?

To address this question, we develop a protocol to iden-
tify the key missing contacts responsible for quadrupole
formation. Specifically, for a jammed disk packing with
Nm missing contacts, we “heal” each missing contact be-
tween disk i and j one at a time by setting σij in the
interparticle potential in Eq. 1 to their current sepa-
ration. This method increases the stiffness of the two
Delaunay triangles sharing the healed contact without
changing the potential energy or interparticle forces. Af-
ter healing a given missing contact, the modified packing
with Nm − 1 missing contacts undergoes a single ather-
mal, quasistatic simple shear strain increment. The re-
sulting non-affine displacement field is then fit to a single
effective quadrupole, which yields R2

ij(1). We repeat this
process for each of the Nm − 1 other missing contacts.

In Fig. 16 (a), we show the relative change in the coef-
ficient of determination after the healing of each missing
contact, 1 − R2

ij/R
2
0, where R2

0 > 0.7 is the coefficient
of determination from the fit of the displacement field
before healing the contacts. The results in Fig. 16 (a)
reveal that healing missing contacts located far from the
quadrupole center does not affect the non-affine displace-
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FIG. 16. (a) Relative change in the coefficient of determi-
nation 1− R2

ij/R
2
0 after healing the missing contact between

disks i and j plotted versus the scaled distance dqij/⟨σ⟩, where
dqij is the distance from the center of the original quadrupole
to that of the healed contact and ⟨σ⟩ is the average disk diam-
eter. R2

0 > 0.7 is the coefficient of determination from the fit
of the original non-affine displacement field before healing to
a single effective quadrupole. (b) Illustration of the missing
contacts (thick solid lines) in a jammed disk packing with a
single effective quadrupolar non-affine displacement field (ar-
rows). Each missing contact between disks i and j is colored
by the corresponding value of 1−R2

ij/R
2
0 after it is healed.

ment field, since 1 − R2
ij/R

2
0 is small at large distances

dqij/⟨σ⟩ from the original quadrupole. In contrast, heal-

ing a missing contact within approximately 3⟨σ⟩ of the
quadrupole causes it to dissolve. These contacts are thus
classified as key missing contacts. In Fig. 16 (b), we dis-
play a map of 1 − R2

ij/R
2
0 for all missing contacts in an

example jammed disk packing, which emphasizes that the
important missing contacts are clustered near the center
of the quadrupole. The localization of the missing con-
tacts also correlates with the regions of large eigenstrains.
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IV. CONCLUSIONS AND FUTURE
DIRECTIONS

In this work, we investigated the non-affine displace-
ment fields of 2D jammed packings of frictionless disks
interacting via purely repulsive linear spring potentials
undergoing athermal, quasistatic simple shear. We
first demonstrated that the probability that the non-
affine displacement fields possess one or two effective
quadrupoles increases with pressure. While isolated
effective quadrupolar structures are rare at low pres-
sures, the probability increases sharply for pressure p ≳
0.2, reaching 33% for one and 76% for two effective
quadrupoles at the maximum pressures studied here.

We then showed that quadrupolar displacement fields,
particularly in jammed packings with a single miss-
ing contact compared to the fully connected Delaunay-
triangulated network, closely resemble the solutions of
the Eshelby inclusion and inhomogeneity problems in
continuum materials. Each missing contact in jammed
disk packings introduces a pronounced local stiffness dif-
ference compared to the reference Delaunay network,
which can give rise to a quadrupolar displacement field
provided that the shear direction is neither parallel nor
perpendicular to the missing bond. Similar to Eshelby
inclusions in continuum materials, the orientation of
the quadrupoles aligns with the direction of the miss-
ing bond. Given the large number of missing con-
tacts in jammed disk packings compared to the reference
network, we reformulated Eshelby’s equivalent inclusion
method (EIM) for jammed disk packings with multiple
interacting triangular inclusions. The resulting superpo-
sition of triangle eigenstrains (applied to the reference
network) yields an exact representation of the non-affine
displacement field for jammed disk packings undergoing
athermal, quasistatic simple shear in the ∆γ → 0 limit.
This new framework emphasizes that the particle-scale
origins of quadrupolar displacement fields are triangle
stiffness mismatches between the jammed disk packing
and the reference network.

We also investigated the necessary conditions for
quadrupolar displacement fields to form in jammed disk
packings during athermal, quasistatic simple shear. Our
results show that the formation of an isolated effec-
tive quadrupole requires: (1) relatively extended low-
frequency vibrational modes for the jammed packing be-
fore the applied deformation and (2) the breaking of a
contact that is aligned with the low-frequency vibrational
modes. The quadrupole that forms is centered on the
newly broken contact, but numerous important existing
missing contacts (relative to the reference network) near
the effective quadrupole can affect its stability. For ex-
ample, we showed that if we heal an existing missing con-
tact within ∼ 3⟨σ⟩ of the quadrupole center, the effective
quadrupole dissolves.

These results open several important questions for fu-
ture research. First, we showed that each triangle stiff-
ness mismatch pertaining to a missing contact is asso-

ciated with a quadrupolar displacement field, while the
interaction of multiple triangle mismatches can lead to
either disordered non-affine displacement fields lacking
coherent structures or coherent displacement fields with
a few isolated effective quadrupoles. We also found that
contact breaking is a necessary condition for the for-
mation of an isolated quadrupole. However, the suffi-
cient conditions for quadrupole formation have not yet
been determined. Second, a single effective quadrupole,
spanning most of the system, is often observed in the
N = 2048 systems considered in the present studies.
We anticipate that there will be a well-defined number
density of effective quadrupoles emerging simultaneously
that depends on pressure p in the large-system limit.
Third, the EIM for jammed disk packings developed here
can be extended to amorphous solids with long-range in-
teractions. In this case, we will likely need to modify
the reference network to include second, third, or further
neighboring particles. The EIM can also be extended to
three dimensions. In 3D systems, the low-frequency vi-
brational modes are typically more localized than those
in two dimensions [50, 51]. This stronger localization
makes it more difficult to detect the quadrupolar sym-
metry that characterizes the nonaffine displacement field
near a broken contact. We can investigate whether
the tetrahedra obtained by Delaunay tetrahedralization
of the packing can serve as the reference networks for
jammed sphere packings in 3D and capture quadrupolar
displacement fields triggered by the stiffness mismatches
between tetrahedra. Using the EIM in 2D and 3D, we
will also explore the mechanisms that control shear band
formation in amorphous solids undergoing shear defor-
mation [13]. One hypothesis is that localized plastic
events propagate along shear planes by activating a net-
work of triangle- or tetrahedral units with stiffness mis-
matches, which drive strain localization and eventually
catastrophic failure. Alternatively, shear bands may arise
from pre-existing alignment of such mismatches with the
shear direction. By tracking the motion of Eshelby-like
defects during relaxation for large shear stress drops, we
can determine whether shear bands are initiated through
the progressive triggering of Eshelby-like mismatches or
whether large shear bands form all at once from inher-
ent structural anisotropy within the material. Further,
we will probe the role of static friction in the formation,
motion, and dissolution of quadrupoles in jammed granu-
lar materials. Addressing these questions will deepen our
understanding of structural defect-mediated deformation
in amorphous solids, such as granular media.
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ϵ*ij

Tj = − Cijklϵ*klni
ϵc

ij = Sijklϵ*kl

(a)

(b)

(c)(d)

FIG. 17. The solution to the Eshelby inclusion problem in
continuum materials can be obtained using a series of cut-
ting, straining, and welding operations: (a) First an elliptical
inclusion is cut out of an infinite solid matrix; (b) It then un-
dergoes a plastic eigenstrain ϵ∗ij with an original shape given
by the dashed line; (c) A traction Tj = −Cijklϵ

∗
klni (n⃗ is the

outward normal unit vector) is applied to deform the inclusion
into its original shape, where Cijkl is the stiffness matrix of
the material; (d) The inclusion is reinserted into the matrix.
Equilibrating the stresses results in a final deformed shape
(indicated by the solid line) with strain ϵcij = Sijklϵ

∗
kl, where

Sijkl is the Eshelby tensor that depends on the elastic prop-
erties of the material and inclusion geometry. The original
shape is indicated by the dashed line.

puting facilities operated by Yale’s Center for Research
Computing.
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Appendix A: Eshelby Inclusion Problem for
Continuum Materials

The Eshelby inclusion problem in continuum materi-
als assumes that an elliptical inclusion within an infi-
nite solid undergoes a spontaneous plastic eigenstrain
ϵ∗ij . Due to the surrounding matrix material, stresses
will emerge in both the inclusion and matrix, resulting
in the final strain, or constrained strain ϵcij , of the in-
clusion to be different from that of the eigenstrain. The
Eshelby inclusion problem can be solved using the se-
ries of operations in Fig. 17. First, an elliptical inclusion
is cut out of an infinite solid matrix and allowed to de-

form into a new shape where the strain is given by the
eigenstrain ϵ∗ij . A traction is then applied to the surface
of the inclusion to strain it back into its original shape.
The inclusion is reinserted and welded back to the ma-
trix material. The inclusion is then allowed to relax into
a new deformed shape with strain ϵcij . The eigenstrain
and constrained strain are related through ϵcij = Sijklϵ

∗
kl,

where Sijkl is the Eshelby tensor that is a function of
the stiffness of the material and geometry of the inclu-
sion. The process to solve the Eshelby inclusion problem
for particulate systems, such as jammed disk packings,
is shown in Fig. 6. For jammed disk packings, we first
remove a triangle from the reference network, strain the
triangle, and reset the equilibrium lengths of the bonds
to achieve zero stress in the triangle. Forces are then
applied to the three vertices of the triangle to deform it
into its original shape. The triangle is reinserted into the
network and the system is allowed to relax.

The solution to the Eshelby inclusion problem can be
used to solve the Eshelby inhomogeneity problem, i.e.,
an affine strain ϵAij is applied to a material with an
elliptical inclusion that has a stiffness mismatch with
the matrix material. As shown in Fig. 18, the dis-
placement field solution for a given inclusion geometry

u⃗
(
CM

ijkl;C
I
ijkl; ϵ

A
ij ; ϵ

∗
ij

)
, which is a function of the stiff-

ness tensors of the matrix CM
ijkl and inclusion CI

ijkl and

the applied affine strain ϵAij , is the sum of two contribu-
tions: the displacement field for the affine strain applied
to the matrix material and the displacement field for an
eigenstrain ϵ∗ij applied to the inclusion with CI

ijkl = CM
ijkl.

The eigenstrain for this decomposition can be obtained
using Eq. 8.

As shown in Fig. 7, a similar approach can be car-
ried out to solve the Eshelby inhomogeneity problem in
particulate systems, such as jammed disk packings. For
jammed disk packings, the corresponding matrix mate-
rial is the Delaunay-triangulated reference network. In
Fig. 7, the inclusion is a triangle with bonds that have
different spring constants from the surrounding network.
The displacement field solution for an affine strain ap-
plied to the network with the triangle defect can be writ-
ten as the sum of two contributions: the displacement
field of a reference spring network without a defect un-
dergoing the same affine strain plus the displacement field
from eigenstrains applied to the triangles in the reference
network that had the mismatching spring constants in
original network.

Appendix B: Components of the Triangle Stiffness
Matrix

In this appendix, we calculate the components of the
triangle stiffness matrix C△ (Eq. 23) by expressing the
triangle potential energy U△ in terms of the deformation
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= +

⃗u (CM
ijkl; CI

ijkl; ϵA
ij ; 0) ⃗u (CM

ijkl; CM
ijkl; 0; ϵ*ij )⃗u (CM

ijkl; CM
ijkl; ϵA

ij ; 0)
(a) (b) (c)

CM
ijkl

CI
ijkl

CM
ijkl CM

ijkl

ϵ*ij

CM
ijkl

FIG. 18. A schematic illustrating the displacement field solution to the Eshelby inhomogeneity problem for an elliptical
inclusion in an infinite solid, where CI

ijkl and CM
ijkl are the inclusion and matrix stiffness tensors. (a) The displacement field

u⃗
(
CM

ijkl;C
I
ijkl; ϵ

A
ij ; 0

)
can be decomposed into (b) the displacement field for an affine pure shear strain applied to the matrix

material u⃗
(
CM

ijkl;C
M
ijkl; ϵ

A
ij ; 0

)
plus (c) the displacement field for an eigenstrain (Eq. 8) applied to the inclusion with CI

ijkl = CM
ijkl.

gradient (Eq. 20)

F△ =

[
Fxx Fxy

Fyx Fyy

]
, (B1)

taking the second derivatives of U△ with respect to F△,
and evaluating the second derivatives at F△ = I. The
components of the triangle stiffness matrix are

C△ =



cxxxx cxxyy cxxxy cxxyx
cyyxx cyyyy cyyxy cyyyx
cxyxx cxyyy cxyxy cxyyx
cyxxx cyxyy cyxxy cyxyx


 , (B2)

with

cxxxx =
∂2U

∂Fxx∂Fxx
=
∑

α

L2
xαkα
L3
α

(
LαL

2
xα + bαL

2
yα

)
,

(B3)

cxxyy =
∂2U

∂Fxx∂Fyy
=
∑

α

L2
xαL

2
yαkα

L3
α

(Lα − bα) , (B4)

cxxxy =
∂2U

∂Fxx∂Fxy
=
∑

α

LxαLyαkα
L3
α

(
LαL

2
xα + bαL

2
yα

)
,

(B5)

cxxyx =
∂2U

∂Fxx∂Fyx

∑

α

L3
xαLyαkα
L3
α

(Lα − bα) , (B6)

cyyyy =
∂2U

∂Fyy∂Fyy
=
∑

α

L2
yαkα

L3
α

(
LαL

2
yα + bαL

2
xα

)
,

(B7)

cyyxy =
∂2U

∂Fyy∂Fxy
=
∑

α

LxαL
3
yαkα

L3
α

(Lα − bα) , (B8)

cyyyx =
∂2U

∂Fyy∂Fyx
=
∑

α

LxαLyαkα
L3
α

(
LαL

2
yα + bαL

2
xα

)
,

(B9)

cxyxy =
∂2U

∂Fxy∂Fxy
=
∑

α

L2
yαkα

L3
α

(
LαL

2
xα + bαL

2
yα

)
,

(B10)

cxyyx =
∂2U

∂Fxy∂Fyx
=
∑

α

L2
xαL

2
yαkα

L3
α

(Lα − bα) , (B11)

and

cyxyx =
∂2U

∂Fyx∂Fyx
=
∑

α

L2
xαkα
L3
α

(
LαL

2
yα + bαL

2
xα

)
.

(B12)
From Eqs. B4 and B5, we can see that since the two

successive derivatives can be interchanged

cyyxx = cxxyy (B13)

and

cxyxx = cxxxy. (B14)

For similar reasons,

cyxxx = cxxyx, (B15)



21

cxyyy = cyyxy, (B16)

cyxyy = cyyyx, (B17)

and

cyxxy = cxyyx. (B18)

Appendix C: Construction of the global stiffness
matrices

To apply the EIM to jammed disk packings, we must
define the gradient matrix A and stiffness matrix C for

the jammed packing. We first relate the displacements to
the strains for the entire system by expressing the 8N ×
2N A matrix in terms of the 4× 6 A△ matrices for each
of the 2N triangles. We can then calculate the global first

Piola-Kirchhoff stresses P⃗1 (to first order in the triangle
strains) by defining the 8N × 8N global stiffness matrix

C in terms of the 4× 4 triangle stiffness matrices C△.
To construct the global 8N × 2N A gradient matrix

from the local 4 × 6 triangle A△ gradient matrices, we
multiply a 8N × 12N matrix with all of the triangle A△

gradient matrices along the diagonal (with 4 × 6 zero
matrices elsewhere) by a 12N × 2N matrix with 2 × 2
identity matrices in the columns that correspond to the
nodal numbering of the triangle vertices in the global
system (and 2× 2 zero matrices elsewhere):

A =




A△
1 0 · · · · · · 0

0
. . . · · · · · ·

...
...

... A△
β · · ·

...
...

...
...

. . . 0

0 · · · · · · 0 A△
2N




1 2 · · · i j · · · m · · · N






0 0 · · · 0 0 · · · 0 · · · 0 1
0 0 · · · 0 0 · · · 0 · · · 0 2
0 0 · · · 0 0 · · · 0 · · · 0 3
...
...

...
...
...

...
...

...
...

...
0 0 · · · I 0 · · · 0 · · · 0 3β − 2
0 0 · · · 0 I · · · 0 · · · 0 3β − 1
0 0 · · · 0 0 · · · I · · · 0 3β
...
...

...
...
...

...
...

...
...

...
0 0 · · · 0 0 · · · 0 · · · 0 6N − 2
0 0 · · · 0 0 · · · 0 · · · 0 6N − 1
0 0 · · · 0 0 · · · 0 · · · 0 6N,

(C1)

where A△
β for triangle β has nodes i, j, and m. To con-

struct the global stiffness matrix C, we place the trian-
gle 4 × 4 stiffness matrices C△ along the diagonal of a
8N × 8N matrix:

C =




C△
1 0 · · · 0

0 C△
2 · · · 0

...
...

. . .
...

0 0 · · · C△
2N


 . (C2)

The global first Piola-Kirchhoff stress P⃗1 is an 8N × 1
column vector defined as

P⃗1 = C ϵ⃗S−1, (C3)

where the 8N × 8N matrix

S =




IA1 0 · · · 0
0 IA2 · · · 0
...

...
. . .

...
0 0 · · · IA2N


 (C4)

I is a 4×4 identity matrix, and Aβ is the area of triangle
β. ϵ⃗ is the 8N × 1 global strain column vector consisting

of all of the individual 4× 1 triangle strains ϵ⃗△,

ϵ⃗ =
[
(⃗ϵ△1 )T (⃗ϵ△2 )T · · · (⃗ϵ△2N )T

]T
. (C5)

Appendix D: Variation of the lowest non-zero
eigenvalue of the dynamical matrix

In this appendix, we characterize the low-frequency
eigenvalues of the dynamical matrix in jammed disk pack-
ing before and after a single contact break. The dynam-
ical matrix is defined as

Miαjβ =
∂2U

∂riα∂rjβ
, (D1)

where U =
∑

i>j Uij(rij) is the total potential energy and

riα is the α-component of particle position r⃗i = [xi, yi]
T .

The contribution to the dynamical matrix M from the
interaction potential Uij between disks i and j is

D
(ij)
pαqβ =

∂2Uij(rij)

∂rpα∂rqβ

∣∣∣∣
p,q∈{i,j}

, (D2)
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FIG. 19. Ratio λ1,S/λ1,E of the lowest non-zero eigenvalue
from the dynamical matrix of a jammed disk packing after
the broken contact to that before the broken contact plotted
as a function of χs in Eq. D8 (blue circles) and χc in Eq. D11
(red squares).

whose elements satisfy the symmetry relations D
(ij)
jαjβ =

D
(ij)
iαiβ = −D

(ij)
jαiβ = −D

(ij)
iαjβ .

For transitions between geometrical families involving
a single contact break, the contact with the smallest over-
lap is the one that breaks. Hence, the contribution of the
pair (i, j) at the strain just prior to contact breaking sat-
isfies

D
(ij)
ii =

[
1− σij

rij
sin2 θij

σij

rij
sin θij cos θij

σij

rij
sin θij cos θij 1− σij

rij
cos2 θij

]
,

(D3)
where θij is the angle between r⃗ij = r⃗i − r⃗j and the x-
axis. In the limit of small particle overlap (rij → σij)
near contact breaking, Eq. D3 becomes

D
(ij)
ii =

[
cos2 θij sin θij cos θij

sin θij cos θij sin2 θij

]
. (D4)

D(ij) is a rank-one matrix, i.e., D(ij) = v⃗v⃗T , where v⃗
is a column vector that indicates the orientation of the
broken bond with four elements cos θij , sin θij , − cos θij ,
and − sin θij for the ix, iy, jx, and jy indexes, respec-
tively. (The other elements in the dynamical matrix are

zero.) The lowest non-zero eigenvalue λ̃1 of the dynam-

ical matrix
∼
M= M −D(ij) after the contact break can

be obtained by solving

det
( ∼
M −λ̃1I

)
= det

(
M − λ̃1I

)[
1− v⃗T

(
M − λ̃1I

)−1

v⃗

]

= 0.
(D5)

Eq. D5 can be rewritten as

1−
Ne∑

k=1

(
e⃗Tk v⃗

)2

λk − λ̃1

= 0, (D6)

where e⃗k is the normalized eigenvector of M with eigen-
value λk. The eigenvalues of the dynamical matrix can be
sorted as λ1 < λ2 < · · · < λNe

, where Ne is the number
of non-zero eigenvalues.
For λ̃1 ≪ λ1, the

1
λk−λ̃1

factor in Eq. D6 can be ap-

proximated as

1

λk − λ̃1

≈ 1

λk
+

λ̃1

λ2
k

, k = 1, 2, . . . , Ne, (D7)

and substituted into Eq. D6 to estimate the ratio

λ̃1

λ1
≈ χs =

1−∑Ne

k=1
(e⃗Tk v⃗)

2

λk

λ1

∑Ne

k=1
(e⃗Tk v⃗)

2

λ2
k

, (D8)

which depends on the alignment of v⃗ with all eigenvectors
of the dynamical matrix.
To obtain an improved estimate of λ̃1 when it is close

to λ1, we keep the 1
λ1−λ̃1

term and use a zeroth-order

approximation for k > 1:

1

λk − λ̃1

≈ 1

λk
. (D9)

Hence, Eq. D6 becomes

1−
(
e⃗T1 v⃗

)2

λ1 − λ̃1

−
Ne∑

k=2

(
e⃗Tk v⃗

)2

λk
≈ 0, (D10)

which yields

λ̃1

λ1
≈ χc =

1−∑Ne

k=1
(e⃗Tk v⃗)

2

λk

1−∑Ne

k=2
(e⃗Tk v⃗)

2

λk

, (D11)

where χc is dominated by the alignment of v⃗ with e⃗1.
We define the parameter χ as the smaller of the esti-

mated values of λ̃1/λ1 from Eqs. D8 and D11, i.e.,

χ = min (χs, χc) . (D12)

The ratio λ1,S/λ1,E of the smallest nontrivial eigenval-
ues of the dynamical matrix for jammed disk packings
before and after a single contact break (where λ1,E and
λ1,S are from the jammed packings before and after the
contact break, respectively) is plotted as a function of χ
in Fig. 19. The strong correlation between λ1,S/λ1,E and
χ suggests that χ can be used to predict changes in the
smallest nontrivial eigenvalues of the dynamical matrix.

Appendix E: Participation ratio of eigenvectors of
the dynamical matrix before and after contact

breaking

The apparent abundance of low-ρ modes in Fig. 13 (b)
is caused by the fact that data points with lower par-
ticipation ratio ρ are placed on top of the other data
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FIG. 20. Probability distribution P (ρ) of the participation
ratio ρ of the vibrational modes along a geometrical family
before contact breaking as shown in Fig. 13 (b).

FIG. 21. Participation ratio ρ of the eigenvector e⃗k plot-
ted as a function of the corresponding vibrational frequency
ωk =

√
λk/m for packings near the transition between two

geometrical families (R2
E(1) = 0.102 and R2

S(1) = 0.835). Tri-
angles and squares correspond to the packings immediately
before and after a single contact break, respectively.

points. Our intention is to highlight cases in which the
breaking of a single contact gives rise to a single ef-
fective quadrupole. By displaying the low-ρ points on
top, we emphasize that the upper-left region of Fig. 13
(b), which corresponds to the formation of isolated ef-
fective quadrupoles, possesses large values of ρ. Fig-
ure 20 shows the distribution of the participation ra-
tio P (ρ) in Fig. 13 (b). The distribution is peaked at
ρ ≈ 0.7. In general, contact breaking leads to more lo-
calized low-frequency modes, as ρ(e⃗1,S) is often smaller
than ρ(e⃗1,E). This result is illustrated in Fig. 21, which
tracks the participation ratio during the formation of an
isolated effective quadrupole. Before the contact break,
the non-affine displacement field has R2

E(1) ≈ 0.102. Af-
ter the break, an isolated effective quadrupole emerges
with R2

S(1) ≈ 0.835. The contact break gives rise to a
lower-frequency mode at ωk ≈ 3 × 10−2, with a signifi-
cantly reduced participation ratio, ρ(e⃗1,S) ≈ 0.12 (high-
lighted by a circle in Fig. 21), compared to ρ(e⃗1,E) ≈ 0.7
before the contact break.
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