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a b s t r a c t 

Complex materials science problems such as glass formation must consider large system sizes that are 

many orders of magnitude too large to be solved by first-principles calculations. The successful applica- 

tion of machine learning (ML) in various other fields suggests that ML could be useful to address complex 

problems in materials science. To test its efficacy, we attempt to predict bulk metallic glass formation 

using ML. Surprisingly, we find that a recently developed ML model based on 201 alloy features con- 

structed using simple combinations of 31 elemental features is indistinguishable from models that are 

based on unphysical features. The 201ML-model performs better than the unphysical model only when 

significant separation of training and testing data is achieved. However, it performs significantly worse 

than a human-learning based three-feature model. The limited performance of the 201ML-model origi- 

nates from the inability to accurately represent alloy features through elemental features, showing that 

physical insights about mixing behavior are required to develop predictable ML models. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

i

n

c

m

i

c

e

a

a

g  

t

a  

w

d

a

[

i

b

c

o

m

a  

c

s

a

fi

t

i

c

r

h

1

(

. Introduction 

The transformative success of machine learning (ML) strategies 

n a wide range of fields, including facial recognition, speech recog- 

ition, consumer behavior, and drug discovery, has triggered the 

onsideration of such strategies in materials science. Even though 

uch scarcer than in other fields, its application is rapidly increas- 

ng. Materials science problems that have been addressed using ML 

an be categorized very generally into two categories. The first cat- 

gory includes problems that can be reduced to a small number of 

toms. Such problems can be, to a large extent, addressed through 

b initio approaches and include formation energies [ 1 , 2 ], band 

aps [3–5] , elastic moduli [ 3 , 4 , 6 ], and crystal structures [ 7 , 8 ]. Even

hough there are still limitations in the representation, synthesiz- 

bility, and accuracy of ab initio approaches [ 9 , 10 ], combining these

ith ML models has revealed numerous examples of accurate pre- 

ictions at low cost, and further led to the discovery of materials 
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t unconventional chemical compositions at an accelerated speed 

11–15] . The other category is complex materials science problems 

n which properties and mechanisms originate from a large num- 

er of atoms. Examples of complex materials science problems in- 

lude predicting the liquidus temperature of an alloy, the viscosity 

f a liquid [16] , the plastic region of the stress-strain curve, the 

icrostructure and resulting properties [17] , and the glass forming 

bility [ 16 , 18 , 19 ] of an alloy. In this case, property-based features

an no longer be calculated using ab initio approaches. As the data 

pace is generally vast for complex problems and features are only 

pproximated, a large number of training data is required for a suf- 

cient representation and training of ML models. 

A canonical example of a complex materials science problem is 

he prediction of the glass forming ability of an alloy. This ability 

s quantified in the critical cooling rate R c , which is the minimum 

ooling rate required to avoid crystallization during solidification, 

esulting in the formation of a glass with an amorphous atomic 

tructure [20] . A particular focus has been on bulk metallic glass 

BMG) formation, which takes place in alloys with R c < 10 0 0 K/s

 18 , 19 , 21 ]. Technologically exciting due to their superb properties
. This is an open access article under the CC BY-NC-ND license 
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 22 , 23 ] and unique processability [24–27] , these BMGs can be vit-

ified into geometries exceeding at least one millimeter and often 

entimeters even in their smallest dimension because of their low 

ritical cooling rate [ 18 , 21 , 28–30 ]. 

Motivated by their technological potential, significant research 

as been carried out to understand metallic glass formation [ 31–

5 ] and to develop models, rules, and indicators [ 19 , 32 , 36 , 37 ] that

uide the development of such alloys. Such models are based on 

hermodynamics, kinetics, rheology, and atomic/electronic struc- 

ure. For example, based on the suppression of nucleation as a 

eans to avoid crystallization, Turnbull proposed T rg = T l / T g ( T l :

iquidus temperature and T g : glass transition temperature) as an 

ndicator for GFA [31] . Extensions to Turnbull’s seminal work have 

een suggested to also consider additional aspects controlling GFA 

 32 , 34 , 38 , 39 ]. Further, theoretical concepts such as the “confusion

rinciple” [35] have provided insights into mechanisms of GFA, 

evealing the number of constituting elements [19] , atomic size 

ariation [ 19 , 40 , 41 ], atomic packing density [36] , atomic/short-to-

edium range topological ordering [ 42 , 43 ] as important contribu- 

ions to GFA. However, even though such approaches have signif- 

cantly contributed to the understanding of metallic glass forma- 

ion, their use in the discovery of BMGs has been limited. The main 

eason for this is that they rely on the knowledge of properties 

hat are not a priori known, and their measurements are often as 

nvolved as determining the GFA through R c directly. Such prop- 

rties include viscosity, fragility, atomic packing, T g , and structure 

nd density of states of competing crystalline phases [44] . 

To accommodate for the limited predictive power of the above 

pproaches, the slow sequential trial-and-error sample fabrication 

nd characterization has been replaced by fast combinatorial syn- 

hesis paired with high-throughput characterization strategies [ 45–

1 ]. However, even with these techniques, the potential composi- 

ion space of BMG formation is by many orders of magnitude too 

arge that a reasonable fraction can be determined [44] . 

An effective model that allows predicting BMGs would have to 

ely on a priori known properties. This approach has been pursued 

y data-driven ML strategies, pioneered by Wolverton et al. [ 52 , 53 ]

here (i.) data on metallic glass formation were collected from the 

iterature, (ii.) a large number of elemental features were consid- 

red that possibly affect GFA, (iii.) alloy features were derived by 

imple statistical functions, and (iv.) a random forest ML model 

as developed and evaluated by 10-fold cross-validation (CV). De- 

pite the high accuracy achieved by the ML model, novel BMG al- 

oys and new insights into glass formation have not been devel- 

ped. 

Surprised by the limited success of such ML strategies in devel- 

ping novel scientific insights or materials for complex materials 

cience problems, in this work we compared the previously devel- 

ped ML model by Wolverton et al. [52] with (i.) a model we gen-

rate based on random and unphysical features, (ii.) a model only 

onsidering the chemical composition, and (iii.) a model where we 

onsider human learning insights. For this purpose, we first recon- 

truct the previous ML model [52] . Specifically, we use literature 

ata on GFA, and construct 201 alloy features through 6 simple sta- 

istical functions from 31 elemental features to build an ML model. 

 10-fold CV test yields a similar high accuracy to the previously 

eported results [52] . To benchmark this model and its high ac- 

uracy determined through the CV test, we create another model 

here we choose random features that are unphysical. Surpris- 

ngly, we found that the unphysical model’s 10-fold CV accuracy 

s as high as the previous model. In fact, even when leaving all 

eatures out and only considering the chemical composition infor- 

ation as input data to build an ML model, the same high accuracy 

s achieved. In other words, models with unphysical features or no 

eatures perform as well as the reconstructed ML model with 201 

eatures. The only information model (i.) and (ii.) are built on is the 
2 
hemical composition. Prediction through these models is based on 

he approach to predict a new BMG in the close chemical proxim- 

ty to an existing BMG. This trivial knowledge of composition is 

ufficient for the commonly used 10-fold CV where “predictions 

re made” only by interpolation but not by extrapolation. Only if 

raining and testing data are distinct and extrapolation instead of 

nterpolation is required, differences in the 201-feature and un- 

hysical models are revealed. However, all the models described 

bove perform significantly worse than a simple, 3-(alloy)feature 

odel based on physical insights. 

. Methods 

The ML method for predicting the GFA can be broken down 

nto four steps ( Fig. 1 ). First, alloy data indicating chemical com- 

ositions and corresponding GFA are collected. In the second step, 

elevant features are determined. Here, elemental properties are 

rst determined that need to be considered for the problem. From 

he elemental features, alloy features are constructed using ei- 

her simple statistical functions (mean, range, standard deviation, 

tc.) or physics-based models, approximating the mixing process 

f the elements. Construction and even identification of features 

equires some degree of physical insights into the complex prob- 

em. Data and features are then used to build and train an ML 

odel, for example, a random forest classification model. Finally, 

he ML model predicts BMGs in the unknown composition space. 

he details of these steps are described in detail in the following 

ections. 

.1. Data collection and processing 

Our database is compiled by collecting all experimentally re- 

orted data from the Landolt-Bornstein Handbook on “Nonequilib- 

ium Phase Diagrams of Ternary Amorphous Alloys” [54] and, addi- 

ionally the peer-reviewed literature following the same approach 

s Wolverton et al. [52] . Here, we categorize alloys as BMG formers 

 R c < 10 3 K/s), ribbon formers ( R c < 10 6 K/s), and non-ribbon for-

ers ( R c > 10 6 K/s). All ribbon and non-ribbon data have been de- 

ermined through melt-spinning experiments and taken from the 

andolt-Bornstein Handbook. It should be noted that the ribbon 

ata have been only tested at a cooling rate of 10 6 K/s, meaning 

he ability to form a bulk glass was not tested during the ribbon 

orming experiments. Therefore, the label “ribbon” does not nec- 

ssarily indicate that the alloy cannot form BMG using bulk glass- 

reparation techniques. 

In summary, the database contains 6816 unique alloy composi- 

ions with 1027 BMG, 4076 ribbon, and 1713 non-ribbon formers 

 Fig. 2 ). The database covers a wide range of chemistries, contain- 

ng 55 different elements ( Fig. 2a ) and considered alloys ranging 

rom binary to octonary alloys, with ternary as the majority of al- 

oys ( Fig. 2b ). We also categorized all alloy data in subgroups based 

n the major binary element pair ( Fig. 2c ). One example of a spe-

ific subgroup is the ZrBe alloy family which is visualized here in a 

ree graph ( Fig. 2d ), showing example alloy compositions and their 

ritical casting diameters D c . 

.2. Feature identification and construction 

The goal of feature identification and construction is to repre- 

ent alloy compositions in a set of features that are relevant for 

he property of interest, which in our case is the GFA of the al- 

oy. Features are essentially a set of quantitative and qualitative 

ttributes that describe the alloy, which serves as the basis for 

he ML model. A set of features is expressed as a feature vector 

hich has a one-to-one correspondence to the alloy composition 

nd label (i.e., BMG, ribbon, or non-ribbon). To identify features, 



G. Liu, S. Sohn, S.A. Kube et al. Acta Materialia 243 (2023) 118497 

Fig. 1. Process flow of the ML method for predicting the GFA of alloys. For the feature identification and construction step, we use either simple statistical functions of 

elemental features or physics-based models with physical insights into the elemental interactions. 

Fig. 2. Alloy database. (a) The counts of the 20 most frequent individual elements found in BMG, ribbon, and non-ribbon formers in the database. (b) The counts of alloy 

systems. (c) The counts of alloy subgroups (binary element pair based). (d) Tree graph of the ZrBe alloy family as an example of a specific alloy subgroup. D c is the reported 

critical casting diameter of the alloy. 
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ne can choose a strategy of considering essentially all possible 

aterial properties as features and use machine learning strategies 

uch as feature selection to evaluate which features are important 

55] . This strategy, in principle, does not require any understanding 

f the investigated problem. However, in reality, this strategy often 

verfits the data and results in poor performance (low accuracy) 

hen applied to a new data set [56] . More effectively, one can use

hysical insights into the problem to determine features. To bench- 

ark the predictive power of the models, we also construct fea- 

ures that are entirely unphysical and, in addition, develop models 

ithout features where we only use the chemical composition of 

lloys, i.e., the concentration of each respective element, as “fea- 

ures”. In summary, we test and pursue the extremes of features 

ere where we use (i.) a large number of general-material features 

ithout any specific physical insight, (ii.) random, unphysical fea- 

ures, (iii.) no feature, only composition information, and (iv.) phys- 

cal insight-based features from human learning. These features are 

escribed below in detail: 

1. General-material features: We started with an expansive 

general-material feature set consisting of 201 features devel- 

oped by Wolverton et al. [52] . These features originate from 

31 elemental features (elemental properties defined for a con- 

stituent element). Six simple statistical functions are used to 

construct the alloy feature, including the minimum, maximum, 

and range of the values of the properties of each element 
3 
present in the material, along with the fraction-weighted mean, 

mean absolute deviation, and mode (i.e., the property of the 

most prevalent element). Details on the features can be found 

in the supplementary materials. 

2. Random, unphysical features: We randomly generated values 

for each element for five elemental properties with no physical 

meaning. We used the same six statistical functions described 

above to translate elemental features to alloy features. 

3. No feature: We only use the composition information, i.e., the 

atomic percent (at.%) of the constituent elements, as input to 

the ML model. 

4. Human learning features: It has been widely confirmed that 

BMG formers generally exhibit a) a composition close to deep 

eutectics b) an atomic size difference of > 12%, and c) a large 

negative heat of mixing among at least some constituent ele- 

ments. These features reflect the state-of-the-art understanding 

of what characterizes a BMG forming alloy [19] . To represent 

these empirical rules by properties that are a priori known, we 

constructed three features: 

(1) Liquidus temperature reduction �T : To determine �T for 

an alloy we first separate the alloy in all binary combina- 

tions. For those binary combinations, liquidus temperatures 

are known. To construct the liquidus temperature of the al- 

loy, we use the ratio of the binary combinations. We extrap- 

olate the liquidus temperature of the alloy T alloy by calcu- 

lating from constituent binary pairs’ liquidus temperatures, 
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e.g., T AB at composition A a 
a + b 

B b 
a + b 

. For a ternary alloy A a B b C c ,

T alloy is calculated as: 

T alloy = 

( a + b ) × T AB + ( a + c ) × T AC + ( b + c ) × T BC 

2 × ( a + b + c ) 

To determine the liquidus temperature reduction, T alloy is 

normalized by the mean liquidus temperature T mean among 

the constituent elements, e.g., T A ×a + T B ×b + T C ×c for the

ternary alloy A a B b C c . �T is expressed as: 

�T = 

T alloy 

T mean 

(2) Atomic size difference δ: 

δ = 100% ×
√ ∑ 

i 

x i ( 1 − r i / r ) , r = 

∑ 

i 

x i r i 

where r i is the atomic radius of the constituent element and 

x i is the atomic fraction of the element. 

(3) Maximum heat of mixing �H max : We find the maximum 

(absolute value) binary mixing enthalpy | �H | among con- 

stituent binary pairs within the alloy. For this pair, we use 

�H multiplied by a factor as our feature. For example, for 

an alloy A a B b C c , if | �H AB | is the maximum binary pair value,

�H max is calculated as �H max = 

2 ×a ×b 
a + b × �H AB . �H AB is ob- 

tained from the Miedema model [57] . The factor 2 ×a ×b 
a + b con- 

siders the fractional number of A-B bonds in the alloy. 

.3. Machine learning algorithm 

In this study we choose the random forest algorithm to build 

lassification models that map different sets of features (described 

n Section 2.2 ) to the GFA of the alloys. Random forest is robust, 

asy-to-understand, and it handles high dimensional data well. In 

hort, a random forest classification model constructs a multitude 

f decision trees at training (illustrated in detail in Fig. 3 ), and the

utput of the model is the label selected by most decision trees. 

pen-source python package Scikit-learn is used to build the ran- 

om forest ML model. Hyper-parameter choices such as the num- 

er of decision trees, the number of features to choose at each 

ree node, or the maximum depth of each tree are optimized by 

rid search in the training process to achieve the best classification 

ccuracy. The trained model can classify any new alloy (beyond 

he training data) into different categories of GFA and computes 

he relative likelihood for a new alloy to be in a certain category. 

herefore, we can use the ML model to make predictions for the 

nknown composition space. 

. Results and discussion 

.1. Performance of machine learning models 

We first evaluate and compare model performance using a 10- 

old CV test. In a 10-fold CV, the data set is partitioned ran- 

omly into ten parts. Each time, 9/10 is used for training and 

he remaining 1/10 for testing. We average the test accuracies 

f the 10 models to get an average accuracy. Such test accuracy 

hows how accurately the predictive model will perform in prac- 

ice when facing unseen data. When considering all data, includ- 

ng BMG ( R c < 10 3 K/s), ribbon ( R c < 10 6 K/s), and non-ribbon

 R c > 10 6 K/s) formers for modelling, we found that high accu- 

acy of 89% ( Fig. 4a ) is reproduced for the ML model based on

eneral-material features. Surprisingly, the ML model based on un- 

hysical, artificial features results in an 87% accuracy, essentially 
4 
ndistinguishable from the general-material model in terms of ac- 

uracy. In fact, if we only consider the chemical composition in- 

ormation as input to build an ML model by using the atomic per- 

ent of each element as features, we get the same high accuracy of 

9%. When only considering BMG and non-ribbon data for build- 

ng ML models, which essentially reduces the problem to a binary 

lassification problem, similar behaviors are observed from these 

odels with model performance results summarized in Fig. 4b . 

his finding that the unphysical feature model and the model 

ased only on composition results in the same accuracy than the 

eneral-material feature based model is surprising and requires 

urther investigation. The only information the unphysical model 

nd the composition model are built on is the chemical composi- 

ion. Therefore, their predictions are based on the trivial approach 

hat it predicts new BMG compositions in close vicinity of exist- 

ng BMGs used in training. We also characterized the performance 

f the classification models using a receiver operating character- 

stic (ROC) curve, indicating no significant difference among four 

odels ( Fig. 4c ). The confusion matrix of the various ML mod- 

ls is also analyzed and shown in the supplementary materials 

Figs. S1–4). 

The training and test data sets typically contain alloys from the 

ame alloy system for the considered data. Therefore, the 10-fold 

V test is limited to an interpolation of the training data rather 

han a true test into a significantly different composition space 

hich would require extrapolation. To address this, Wolverton et 

l. previously proposed an extrapolation test called the “leave- 

inary-out” CV test. The authors systematically withheld data sub- 

ets containing each pair of elements (458 binary pairs in total) in 

he training data and use the withheld subset as a test [52] . For

xample, all alloys containing the ZrBe binary pair are withheld in 

he training data and are used as test data. The classification accu- 

acy is then calculated for the test data, and the average accuracy 

cross all binary pairs is used as the final measure. This “leave- 

inary-out” test is designed to evaluate the ML model’s ability to 

redict GFA for alloy systems different from the systems present in 

raining, addressing the limitation of the 10-fold CV test. Following 

his argument, one should expect the unphysical and composition 

odels to fail and result in low prediction accuracy as they only 

redict a BMG in the composition vicinity of an existing, used-in- 

raining BMG. However, unphysical and composition models yield 

verage classification accuracies of 77 and 75%, essentially indis- 

inguishable from the accuracy of the general-material model of 

6%. When only considering BMG and non-ribbon data for build- 

ng ML models, similar results are obtained, revealing high accu- 

acy above 91% for all four models. The model performance results 

re summarized in the supplementary Fig. S5. We argue that the 

verage accuracy is not informative since for many of the binary 

airs there are only a few alloys containing them in the database; 

hus, their “leave-binary-out” accuracies are less reliable and not 

ndicative of the model’s ability. Instead, we argue here that one 

hould only select to leave out more prominent binary systems and 

nown BMG formers to reveal the differences among models. More 

rucially, the classification is discrete but not continuous (i.e., BMG 

r non-ribbon) since alloys are classified as BMG with a probabil- 

ty to form BMG > 0.5 given by the model. This classification is 

lso insufficient. We argue that an effective model would predict 

nown BMGs not just with probability p > 0.5 but with a very high 

robability, i.e., p > 0.95. To distinguish between these two criteria 

f p > 0.5 from p > 0.95, one would need to predict all possible

lloys in the composition space and determine for each alloy the 

robability to form a BMG. For example, as we will show below, 

alculating for all potential ternary alloys ( ∼2.6 million) p > 0.5 

ields 0.5–1 million BMGs. This number is much too large to ex- 

erimentally verify, even with high throughput methods, and it is 

lso unreasonably large; it has been estimated previously that only 
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Fig. 3. Random Forest Classification. In our data, an alloy is represented by the feature vector in which each feature is constructed based on a specific function with 

composition and elemental properties as input. The random forest classification algorithm builds many decision trees (tree 1, 2, …, n), with tree j shown as an example here. 

For the constructing of each decision tree, at any node of the tree, the algorithm finds the feature F k , F l , F m , . . . (from a set of features) and the cutoff value K, L, M, … for 

splitting the data to minimize the classification error rate. The classification error rate is simply the percentage of training observations in a particular region that do not 

belong to the most common class, as we intend to classify each observation to the most prevalent class of training data in that region. When using the developed random 

forest model to make predictions, data goes through every decision tree in the forest to arrive at a label (one example decision path is indicated with orange arrows). The 

final predicted label is the label selected by most trees (i.e. majority voting). 

Fig. 4. ML model performance. (a) 10-fold CV test reveals high accuracy above 86% for all four models (general-material, unphysical, composition, and human learning) built 

on all data, including BMG ( R c < 10 3 K/s), ribbon ( R c < 10 6 K/s), and non-ribbon ( R c > 10 6 K/s) formers. (b) 10-fold CV test reveals high accuracy above 96% for all models 

built on only BMG and non-ribbon data. (c) Comparison of ROC curves among all four models built on BMG and non-ribbon data show the variations of true positive rates 

(TPR) and false positive rates (FPR) of the classifier as a function of the threshold at which an entry is labeled as “BMG”, indicating that all the models exhibit similar 

performance in predicting glass formation. For all models their performance is much better than the random guess line connecting (0, 0) and (1,1) points as a baseline, but 

none of the models is significantly better than the others. 
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1/10 6 alloys form BMGs [44] . Therefore, it is more reasonable to 

ook at high probability predictions and test a model’s predictive 

ower for those predictions, i.e., p > 0.95. 

.2. Prediction of unknown metallic glasses 

To test the ability of various ML models to predict BMGs that 

re novel and significantly different from known BMGs used in 

raining, we use the trained model and predict into the entire com- 

osition space, which is spanned by ternary combinations of 24 

ractical elements. We then examine the predicted compositions 

nd identify compositions with the highest likelihood of being a 

MG, i.e., p > 0.95. 
5 
To construct the composition space that we consider for po- 

ential ternary BMG formation, we consider 24 practical elements 

metals and metalloids, considering cost, reactivity, and toxicity): 

, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Zr, Nb,

o, In, Sn, Si, Ba, and Ta. These elements yield 2024 ternary com- 

inations (24 choose 3). For each ternary system, we space alloys 

n a 2 at.% grid to reasonably consider the often rapid changes of 

FA with composition [58] . This results in 1326 alloys per ternary 

nd ∼2.6 million alloys for all 2024 ternary systems from the here 

onsidered elements. 

For all ∼2.6 million alloys, we use the model to calculate the 

abel and its probability (i.e., BMG, p > 0.95). To test the model’s 

rediction performance, we leave some known BMGs out of the 

raining set and subsequently determine if they have been pre- 
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Fig. 5. ML model performance predicting unknown bulk metallic glasses. (a) Comparison of the predictive power of ML models (general-material, unphysical, composition, 

and human learning), quantified by the percentage of known BMG formers (the ones that contain any Cu, Pt, Ge, Sn, and Hf elements have been left out in training) that are 

among the top BMG predictions by the ML model with a probability > 0.95. (b) Comparison of the ability of ML models (general-material, composition, and human learning) 

to predict compositionally distinct alloys, quantified by the percentage of alloys that are compositionally distinct from known BMGs in training at varied at.% difference 

thresholds. 
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icted as BMGs with high probability. We quantify the prediction 

erformance by the percentage of known BMG formers (the ones 

hat have been left out in training) that are among the predicted 

MG formers with a p > 0.95. The BMG formers we leave out of 

he training data set are: (i.) those that contain any Cu, Pt, Ge, 

n, and Hf elements or (ii.) those that contain any ZrCu, ZrBe, 

eB, and NiNb element pair, respectively. The selection of the ele- 

ents chosen for (i.) is such that “similar’ elements are still in the 

raining set whereas for (ii.) the pairs exhibit more unique behav- 

or [59] and hence are more different from alloys in the training 

et. 

When comparing the prediction performance of the four con- 

idered ML models with alloy features based on human learning, 

eneral-material, unphysical, and composition, by far the best pre- 

iction is achieved by the model using human learning-based fea- 

ures. Its predictive power, as quantified here, is more than twenty 

imes higher than that of the general-material model, while the 

nphysical model and the model based solely on composition can- 

ot predict the known BMGs that have been left out of the train- 

ng set at all ( Fig. 5a ). The models based on unphysical features

nd composition do not have any predictive power in the unknown 

pace as they only operate by predicting a BMG former in the 

lose vicinity of a known BMG used in training. As the general- 

aterial model’s performance is only insignificantly higher, we 

ust also conclude that the general-material model does not 

xhibit predictive ability beyond the trivial prediction very 

lose in composition to an already known and used-in-training 

MG. 

To further investigate the predictions made by the various mod- 

ls and how different they are from the training data, we use 

ll BMG and non-ribbon data in training and investigate out of 

he top predictions (BMG, p > 0.95) how many alloys are com- 

ositionally distinct from known BMGs used as training data. To 

uantify compositional distinction between alloys in the train- 

ng and in the prediction, we use the composition fraction dif- 

erence, A a B b C c different by �a, �b, �c, from A a ±�a B b ±�b C c ±�c .

o identify compositionally distinct alloys, we vary the thresh- 

ld for �a, �b, �c . As shown in Fig. 5b , the human learn-

ng model can predict significantly more alloys that are compo- 

itionally distinct from the training data than the general-material 

odel and the composition model under any threshold. This find- 

ng further strengthens the above finding that the general-material 

odel and the composition model only predict new BMG com- 

ositions in close vicinity of known BMGs used in the training 
ata. p

6 
.3. Discussion of machine learning approaches to predict BMG 

ompositions 

The presented comparisons of ML models are based on quali- 

atively and quantitatively very different f eatures and feature con- 

tructions. The general-material model has the lowest requirement 

f physical insights when constructing alloy features, hence hav- 

ng the most hands-off ML characteristic. The human learning 

odel is the extreme opposite. The considered three features had 

een identified as most indicative of bulk metallic glass forma- 

ion through 50 years of research. To benchmark ML models for 

he prediction of BMGs, we constructed two models, one based 

n random features that are unphysical and another model that 

oes not use features but only the information of the composi- 

ion. These models have no predictive power and reveal no insights 

nto glass formation motifs beyond the trivial prediction that in the 

lose vicinity of a known BMG used in training, other BMGs are 

resent. Even though BMG forming alloys can rapidly change their 

FA with composition [58] , one can usually, and this is what these 

odels do, find a BMG in close vicinity of a known BMG. Hence, 

n ML model with performance similar to the unphysical and com- 

osition models will also not have true predictive power. 

Using the data set described in Section 2.1 , we found that in 

he interpolation test (10-fold CV) the performance of the general- 

aterial model and the human learning model, quantified by the 

0-fold CV accuracy, is essentially identical to the unphysical and 

omposition models. This observation suggests that the typically 

sed 10-fold CV accuracy [ 52 , 60 ] is not a useful method to mea-

ure how effective an ML model is to predict BMGs. The fact that 

heir accuracies are essentially identical suggests that interpolation 

ithin the same composition space where training has been car- 

ied out is only based on the trivial knowledge of composition. As 

n the 10-fold CV for the data set used here, there typically exists 

statistically) an alloy in the 90% training data that is composition- 

lly similar to every alloy the model predicts in the 10% test data. 

ence, interpolation of all models is most effective when only us- 

ng the composition information. The performance of ML models 

n the extrapolation mode is significantly different. Whereas the 

eneral-material model does not extrapolate better than the mod- 

ls (unphysical and composition) with no true extrapolative abil- 

ty, the human learning-based model performs significantly better 

 Fig. 6 ). 

These findings are highly surprising and demand a deeper dis- 

ussion on why standard ML strategies requiring essentially no 

hysical insights are limited in studying or predicting complex ma- 
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Fig. 6. Predictive power of machine learning versus human learning insights-based ML model for BMG discovery. The general-material ML model is based on elemental 

features and statistical functions while the human learning model is built on physical insights into GFA. The general-material model can only make accurate predictions in 

close vicinity of the training data versus that the human learning model is able to predict distinct BMG systems in the vast potential composition space. Number of known 

BMG systems in the training is ∼10 2 , potential BMG systems ∼10 3 , and multicomponent alloy systems ∼10 5 . 
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erials. It has been argued in the past that data set bias, con- 

inuous vs bimodal GFA classification, lack of reported failed or 

ull results in the literature are among the challenges faced by 

L models [ 61 , 62 ]. Even though not discussed in detail here, our

tudy confirmed some of these points. However, we argue that 

he main challenge lies in the construction of a meaningful fea- 

ure basis when describing alloys. Whereas the properties of indi- 

idual elements are essentially all known, mixing is vastly richer 

nd only for minute fractions determined. Instead, the field of ma- 

erials science has been focusing and relying on physical mod- 

ls. Even though powerful to develop a conceptual understand- 

ng, such models can only be applied for idealized cases, are al- 

ays an approximation, and are often limited to binary mixing. 

ence, using elemental properties and combining them through 

tatistical functions that do not consider the underlying physical 

echanisms such as minimum, maximum, range, mean, mean ab- 

olute deviation, and mode cannot generally describe alloy prop- 

rties accurately. To give just one example, when constructing 

he liquidus temperature feature T L for the alloy Au 82 Si 18 , using 

he average values of the liquidus temperatures for Au and Si, 

hich are the most reasonable among the statistical functions pre- 

iously used, results in 1127 °C compared to the actual value of 

 L (Au 82 Si 18 ) = 364 °C. As the T L of an alloy or more specifically the

eduction of the T L relative to the weighted average of the consti- 

utive elements’ T L is a main contributor to bulk glass formation 

31] , it is not surprising that the general-material model lacks in- 

ights beyond the trivial knowledge of the data it uses. 

It is important to mention that even in the human learning- 

ased model, the features are only simplified and idealized ap- 

roximations to the real mixing behavior in the alloy, and hence 

ne cannot expect precise prediction. Further, as only idealized fea- 

ures are used, the model will make “expected” predictions of new 

MG formers based on current understanding. “Unexpected” pre- 

ictions beyond today’s understanding of BMG formation are less 

ikely to be made through the here constructed ML model based 

n human learning. As the composition space for alloys is vast and 

nly a minute fraction has been considered where only a tiny frac- 

ion of potential BMG formers have been identified [44] , identi- 

ying only the “expected” BMGs would already be a large success 

nd advance BMG technology. To also identify “unexpected” BMGs 

eyond today’s understanding of BMG formation, ML strategies are 

n principle capable but are unrealistic for addressing BMG forma- 
7

ion or other complex materials science problems. This is because 

hen considering the effectiveness of an ML approach, one also 

ust take into account the quantity of experimental data that can 

e practically determined and compare this to the potential data 

pace. The alloy space for multicomponent alloys is vast; for the 

ere limited ternary consideration ∼2.6x10 6 alloys, when consider- 

ng up to quinary alloys ∼10 12 alloys [44] . Only when a sufficiently 

epresentative fraction of the potential data space can be experi- 

entally realized and used in the training set, the ML algorithms 

an generate predictions with high accuracy, and even with fea- 

ures that poorly represent the alloy (like the alloy features used 

n the general-material model). However, determining such a rep- 

esentative fraction is a grand challenge; even when the state-of- 

he-art combinatorial synthesis paired with high-throughput char- 

cterization methods that can determine and characterize ∼10 4 - 

0 5 alloys per year [63] are considered, it would take over million 

ears to determine 1% of the composition space of quinary alloys. 

 better strategy may be to (i.) carefully determine fewer but care- 

ully selected alloys to represent the alloy and features space and 

etermine for those alloys the GFA and (ii.) use models based on 

hysical insights that describe the mixing behavior. 

. Conclusion 

We built ML models to predict bulk metallic glass formation. 

urprisingly we found that a general-material ML model with 201 

lloy features constructed through simple statistical functions from 

1 elemental features is indistinguishable from models that are un- 

hysical or do not consider any features, when the prediction ac- 

uracy is tested in an interpolation manner. Only when significant 

eparation of training and testing data is carried out, the general- 

aterial model performs better in this extrapolation mode than 

he unphysical or composition models, yet significantly worse than 

 human learning based 3-feature model. We explain the limited 

erformance of the general-material model by the general inabil- 

ty to accurately represent alloy features through elemental fea- 

ures. As generally the potential data space is too large to de- 

ermine a representative fraction, which would allow ML mod- 

ls to be effective even with poorly representative features, com- 

lex material science problems like bulk metallic glass formation 

equire physical insights to develop effective and predictable ML 

odels. 
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