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s,University of Texas, Austin, TX 78712, USAAbstra
t. Simulations of volumetri
ally for
ed granular media in two di-mensions produ
e states with nearly homogeneous density. In these states,long-range velo
ity 
orrelations with a 
hara
teristi
 vortex stru
ture de-velop; given suÆ
ient time, the 
orrelations �ll the entire simulated area.These velo
ity 
orrelations redu
e the rate and violen
e of 
ollisions, sothat pressure is smaller for driven inelasti
 parti
les than for undriven elas-ti
 parti
les in the same thermodynami
 state. As the simulation box sizein
reases, the e�e
ts of velo
ity 
orrelations on the pressure are enhan
edrather than redu
ed.

1. Introdu
tionIn rapid 
ows of granular media, the mean time between 
ollisions of grainsis mu
h longer than the duration of a 
ollision [1℄; for su
h 
ows, the ma-
hinery of kineti
 theory is expe
ted to apply. Continuum equations [2, 3℄analogous to the Navier-Stokes equations 
an be produ
ed, allowing quanti-tative analysis of 
ows. The simplest and most 
ommon formulations in
or-porate Boltzmann's assumption of mole
ular 
haos: that parti
le velo
itiesare un
orrelated.While this assumption works well for low-density mole
ular gases, gran-ular gases may not abide su
h a restri
tion be
ause 
ollisions betweengrains are inelasti
. Inelasti
 
ollisions redu
e relative velo
ities, so thatpost-
ollisional velo
ities are more parallel than pre-
ollisional velo
ities.Repeated inelasti
 
ollisions 
an lead to strong, long-range velo
ity 
orrela-



2tions, whi
h standard kineti
 theory does not in
lude. We will use mole
ulardynami
s simulations to produ
e steady state granular gases and study thevelo
ity 
orrelations that develop.The importan
e and intrinsi
 interest of velo
ity 
orrelations in gran-ular 
ows have been noted by a number of resear
hers. Two-dimensionalsimulations of an initially homogeneous distribution of inelasti
 disks with-out velo
ity 
orrelations show that as time progresses, velo
ity 
orrelationsbuild in both strength and range [4℄. These simulations are limited in time,however, be
ause the homogeneous state is unstable to density 
u
tua-tions, and rapidly be
omes inhomogeneous. Nevertheless, these simulations
learly displayed a 
hara
teristi
 vortex stru
ture of the 
orrelations. Basedupon similar 
onsiderations, ring kineti
 theory, whi
h a

ounts for velo
-ity 
orrelations, has been applied to the 
ooling state [5℄. One-dimensionalsimulations of sto
hasti
ally for
ed point parti
les also show velo
ity 
or-relations [6℄.We apply sto
hasti
 for
ing [6, 7℄ to two-dimensional event-driven simu-lations of inelasti
 disks. The for
ing over
omes the tenden
y of the granularmaterial to form density 
lusters, and approximately homogeneous steadystates form. In an earlier study of these states [8℄, we found strong velo
ity
orrelations that extended throughout the entire simulation area. In thepresent work, we dis
uss the simulation method, show that the velo
ity
orrelations are essentially independent of the simulated area, and des
ribethe vortex stru
ture of the 
orrelations.2. Simulations of Driven Granular GasesWe treat 
ollisions between mole
ules as instantaneous and binary. The
ollisions between grains 
onserve momentum but dissipate energy. Between
ollisions, parti
les travel along straight lines if una

elerated, or alongparabolas if a

elerated. This model allows eÆ
ient simulation of 
olle
tionsof parti
les using event-driven mole
ular dynami
s [9, 10℄.When parti
les 
ollide, the 
omponent of the relative parti
le velo
ityalong the line joining parti
le 
enters, vn, is reversed, and redu
ed by afa
tor e, the 
oeÆ
ient of restitution, whi
h 
an take values between 1for elasti
 parti
les and 0 for 
ompletely inelasti
 parti
les. We allow e todepend on vn throughe(vn) = � 1�Bv�n ; vn < vo� ; vn > vo ; (1)where B = (1 � �)(vo)��, � = 3=4 and � is a 
onstant, 
hosen to be 0:7.These parameters give quantitative agreement to experiments on patternsin verti
ally os
illated granular media [11, 12℄. The variation in e has the ef-



3fe
t of removing inelasti
 
ollapse [13℄, whi
h is a singularity in the inelasti
hard sphere model that produ
es an in�nite number of 
ollisions within a�nite time [14, 15℄. In general, 
olliding parti
les also exert fri
tional for
eson one another; for this paper, we assume that the 
oeÆ
ient of fri
tion iszero, so that we are studying only the e�e
ts of inelasti
ity.Be
ause of inelasti
ity, the energy of an unfor
ed 
olle
tion of grainsinevitably de
reases. To a
hieve steady states, then, we must for
e thegranular material. Methods that for
e through boundaries, su
h as shak-ing, invariably produ
e strong inhomogeneities in the system; to a
hievenear-homogeneity, we for
e volumetri
ally, assuming the parti
les to be in
onta
t with a white-noise heat bath [7℄. Whenever two parti
les 
ollide, thevelo
ities of two other randomly sele
ted parti
les are 
hanged by amountsjÆvjr̂i, where the magnitude of the ki
ks, jÆvj, are always the same, butthe dire
tion ve
tors, r̂i are randomly 
hosen for ea
h ki
ked parti
le. Inaddition to the white noise heat bath, we perform a lesser number of runswith two other heat baths. To model the motions of pu
ks on an air ta-ble [16, 17℄, we 
an allow parti
les to a

elerate randomly from 
ollisionto 
ollision. Finally, we model the e�e
ts of a strong heat bath, whi
h wedenote the Boltzmann bath, by 
ompletely obliterating the velo
ities ofrandomly 
hosen parti
les, and giving new velo
ities based on a Boltzmanndistribution. The details of all three for
ing methods may be found in [8℄.We perform simulations of N disks of diameter � moving in a two-dimension square of side length L, whi
h varies from 52:6� to 420:8�. Thesimulation box is periodi
 in both dire
tions. The solid fra
tion, de�nedas N �4 �2L2 , is 0:5 for all runs. Be
ause of the variation of e with relativenormal velo
ity, the velo
ity s
ale v0 enters; we use v0 to nondimensionalizevelo
ities, and v20 to nondimensionalize the granular temperature T . For Tmu
h larger than one, most parti
le 
ollisions will o

ur with the high-velo
ity value of e, 0:7; for lower T , a range of e will o

ur.3. Dependen
e of Correlations upon Simulation AreaWe denote two parti
les 1 and 2, and k̂ the a unit ve
tor pointing fromthe 
enter of 1 to the 
enter of 2. The velo
ity of 1 then has a 
omponentsparallel to, vjj1 , and perpendi
ular to, v?1 , k̂, as does parti
le 2. We de�netwo 
orrelation fun
tionshvjj1vjj2 i = X vjj1vjj2=Nr; (2)hv?1 v?2 i = X v?1 v?2 =Nr; (3)where the sums are over the Nr parti
les su
h that the distan
e between thetwo parti
les is within Ær of r. For un
orrelated parti
le velo
ities, hvjj1vjj2 iand hv?1 v?2 i will both give zero.



4 In the smallest simulation area, L = 52:6�, 
orrelations extend the fulllength of the 
omputational 
ell. Cell �lling stru
tures may be divided intotwo 
ases: stru
tures with a natural length that is larger than the boxin whi
h they exist and stru
tures that will always grow to �ll any �nitebox. To di�erentiate between the former and the latter, we performed foursimulations with white noise for
ing, quadrupling the area at ea
h step,while holding the solid fra
tion �xed at 0:5. The granular temperature T isapproximately 30, but varies between 28 in the smallest box and 32 in thelargest. This variation in temperature is not important; for T >> 1, the
oeÆ
ient of restitution is independent of 
ollision velo
ity. In this limit,the role of the temperature is simply to set the velo
ity s
ale. The velo
ity
orrelation fun
tions are shown in Fig. 1. Even in the largest simulation,
omposed of 112768 parti
les, the 
orrelations �ll the box. However, the
orrelation fun
tions for the largest simulation are somewhat di�erent fromthe smaller ones. This is probably due to poorer statisti
s; in terms of
ollisions per parti
le, this run lasted only one-half as long as the nextlargest.Be
ause velo
ity 
orrelations are positive for small separations, parti
les
ollide less frequently and with less relative velo
ity than elasti
 parti
lesat the same density, for whi
h velo
ity 
orrelations are mu
h smaller. As aresult, less momentum will be transferred through inelasti
 
ollisions thanthrough elasti
 
ollisions, and the pressure, P , will de
rease.Assuming that velo
ity 
orrelations do not exist, the equation of statefor dense granular gases is given by [3℄P = (4=��2)�T (1 + (1 + e)G(�)):; (4)The �rst term on the right hand side, (4=��2)�T , a

ounts for momentumtransfer due to parti
le streaming without 
ollisions, while the se
ond term,(4=��2)�T (1+e)G(�), a

ounts for the momentum transfer due to parti
le
ollisions [18℄. In the absen
e of velo
ity 
orrelations, G(�) is de�ned as�g(�; �), where g(�; �) is the radial distribution fun
tion for the parti
les,evaluated at zero parti
le separation. Cal
ulation of P from simulation,via measurement of the virial [19℄, be
omes a measurement of G(�), whi
hdes
ribes the 
ollisional momentum transport. If velo
ity 
orrelations exist,G(�) will be redu
ed, sin
e less momentum will be transported 
ollisionally.Figure 1 shows that the short range velo
ity 
orrelations depend on thesize of the box; therefore, G(�) should also depend on L. Figure 2 displaysG(�) as a fun
tion of L for these four runs. Over about one de
ade, G(�)s
ales with logL. Clearly this s
aling 
an not 
ontinue inde�nitely, sin
eunphysi
al negative values of G(�) would result. Note also, that in
reasingthe box size a
tually leads to values of G(�) farther from the values forun
orrelated velo
ities.
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Figure 1. Velo
ity 
orrelations as a fun
tion of parti
le separation at � = 0:5 and T � 30,for four di�erent box sizes. + : L = 52�, 4 : L = 105�, � : L = 211�, 2 : L = 421�.This unusual result, that the importan
e of velo
ity 
orrelations in-
reases with in
reasing 
omputational area, 
an also be dedu
ed from thedistribution of 
ollision velo
ities. Figure 3 exhibits these distributions forthe runs displayed in Figures 1 and 2. As the 
omputational area in
reases,so too does the deviation from the distribution predi
ted for parti
les 
ho-sen without 
orrelation from a Boltzmann distribution, plotted as a solid
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Figure 2. G as a fun
tion of L for the runs shown in Fig. 1. Lo = 52� denotes the lengthof the smallest box. The dotted line is a �t to all four points: G(�) = 1:3�0:04 log2(L=Lo),The solid line as a �t to the three largest L values: G(�) = 1:295 � 0:038 log2(L=Lo).Note that the log is base 2.
urve.4. Vortex Stru
tureInelasti
ity breeds velo
ity 
orrelations; redu
tion of relative velo
ity in
ollisions leads to parti
les moving more alike after 
ollisions than before.On average, then, parti
les will be surrounded by parti
les that are movingalong with them. The stru
ture of the velo
ity 
orrelations 
an be elu
i-dated by 
al
ulating this average 
ow around ea
h parti
le.For a single parti
le i, we 
an 
al
ulate the 
ow around it by translatingit to the origin, and rotating so that its velo
ity lies along the positive xaxis. If v(x; y) is the velo
ity �eld de�ned by the parti
les, then the 
owaround parti
le i is given byui = R�(i)v(x� xi; y � yi); (5)where �(i) is the angle between the i-th parti
le velo
ity, vi , and thepositive x axis, (xi; yi) is the position of the i-th parti
le, and R� is theoperator that rotates ve
tors 
lo
kwise through angle �. The average 
ow
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Figure 3. Probability distribution of 
ollision velo
ities v
 = jv1 � v2j, for the data inFigs. 1 and 2. + : L = 52�, 4 : L = 105�, � : L = 211�, 2 : L = 421�. The solid 
urveis P (v
=pT ) = (1=2p�T 3)v2
e�v2
=4T , whi
h holds for elasti
 parti
les.around parti
les, then, is u = NXi=1 ui=N: (6)Finally, u is averaged over about 100 frames to redu
e noise.Figure 4 displays ve
tor �elds of the average 
ow around parti
les, u,for the three types of for
ing, as well as for unfor
ed elasti
 parti
les, allat � = 0:5 and T = 1:05. In ea
h 
ase, the ve
tor at the origin, whi
hmeasures only the average parti
le speed, has been suppressed, and thelongest remaining ve
tor in ea
h �eld has been s
aled to unit length. In boththe white noise and a

elerated for
ings, the average 
ow near the originis along the positive x axis, i.e., with the dire
tion of the 
entral parti
le'smotion. The Boltzmann bath shows some indi
ations of this e�e
t 
lose tothe origin, but the 
orrelations are destroyed by the strongly thermalizingfor
ing before they 
an propagate to larger length s
ale. For the elasti
parti
les, there is no dis
ernible 
ow, only noise.Close to any parti
le, surrounding parti
les move along with it. Far-ther away, the 
orrelations de
ay and 
annot be seen on Fig 4, so theboxed regions for the white noise for
ing and for elasti
 parti
les are ex-panded in Fig. 5. While expansion of the velo
ity �eld for elasti
 parti
les
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Figure 4. The average velo
ity �elds around a parti
le 
entered in ea
h 
ell and movingto the right, u, for elasti
 parti
les and for inelasti
 parti
les for
ed in three di�erentways (
f se
tion 2). Ea
h ve
tor �eld is s
aled separately so that its longest ve
tor haslength one. Compared to the (suppressed) 
entral ve
tor, these lengths are: White noise,0.2; A

elerated, 0.27; Boltzmann, 0.008; Elasti
 0.008. The boxed regions in the whitenoise and elasti
 
ows are shown in Fig. 5.produ
es still more noise, the inelasti
 
ow �eld reveals a highly orderedvortex stru
ture. Along the dire
tion of the 
entral parti
le's motion, thevelo
ities slowly drop to zero, while perpendi
ular to the original parti
le'smotion, the velo
ities drop to zero and in
rease in the negative dire
tion;this 
ow makes 
lear the stru
ture of the velo
ity 
orrelation fun
tions inFig. 1.This vorti
al 
ow is reminis
ent of similar stru
tures produ
ed in simu-lations of elasti
 parti
les [20, 21℄ by Alder and Wainwright. In their simu-
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Figure 5. A 
lose-up on the boxed regions in Fig 4 reveals that for inelasti
 parti
les,large vorti
es form, one on ea
h side of the parti
le. The longest ve
tor in the velo
ity�eld for inelasti
 parti
les represents a velo
ity nine times larger than that representedby the longest ve
tor for elasti
 parti
les.
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Figure 6. Snapshots of simulations with white noise driving and with elasti
 parti
les;large 
oherent stru
tures are visible for the dissipative system on the left. Parti
les withpositive horizontal velo
ity are bla
k, parti
les with negative horizontal velo
ity are white.(� = 0:5; T = 1:05)lations, they dis
overed di�usive behavior di�erent from that predi
ted bykineti
 theory. The di�usion 
onstant may be written in terms of the slopeof the exponentially de
aying auto
orrelation fun
tion. However, Alder andWainwright found deviations from exponential de
ay, and tra
ed the devi-ations to a vorti
al 
ow. If parti
les a and b are initially un
orrelated, anelasti
 
ollision will 
orrelate ea
h parti
le's post 
ollision velo
ity with theother parti
le's pre-
ollision velo
ity; both parti
les now have a 
orrelationwith the original velo
ity of parti
le a. As parti
le b 
ollides with otherparti
les, they gain information about parti
le a's initial velo
ity. Several
ollision times later, this information has been transmitted to many parti-
les.There are two main di�eren
es between the vorti
es in 
ows of elasti
parti
les and those in 
ows of inelasti
 parti
les. Alder and Wainwrightprodu
ed the 
ow �eld given byu(t0)i = R�(i;t)v(x� xi(t); y � yi(t); t0): (7)For t0 = t, Eq. 5 is re
overed; for elasti
 parti
les, no stru
ture is apparent. Itis only at later times, t0 > t, that a vortex appears in u(t0). For the inelasti
parti
les, however, stru
ture is 
lear at t0 = t. The se
ond di�eren
e is thestrength of the vortex. The strongest velo
ity in Alder and Wainwright'svortex was about 2% of the original velo
ity, while for inelasti
 parti
les,the strongest velo
ity 
an be about 40% of the 
entral velo
ity.



11The inelasti
 vortex is so strong that hints of it are visible even in asingle snapshot of parti
les. Figure 6 shows su
h a snapshot, with parti
les
olored bla
k if they have positive horizontal velo
ity and white if they havea negative horizontal velo
ity. For elasti
 parti
les, the bla
k and white arewell mixed, but in the inelasti
 
ase larger s
ale stru
ture 
an be glimpsed.Bla
k parti
les are 
on
entrated along the top and bottom of the image,and white parti
les are 
on
entrated along the 
entral region.5. Con
lusionThe 
orrelations we have found are 
onsistent with those of simulationson the homogeneous 
ooling state [4℄. In those simulations, the range ofvelo
ity 
orrelations grew until the onset of large s
ale density variations.The addition of for
ing in our simulations suppresses the growth of density
u
tuations, allowing the velo
ity 
orrelations to 
ontinue to grow untilthey extend throughout the entire 
omputational area.The results we obtain are not parti
ularly sensitive to the exa
t formof the for
ing. In both the white noise and a

elerated for
ing s
hemes,vorti
al 
orrelation stru
tures form. Only when the bath expli
itly destroys
orrelations, as in the Boltzmann bath, do the results di�er.6. A
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